
2019 Denison Spring Programming Contest
Granville, Ohio
2 March, 2019

Rules:

1. There are six problems to be completed in four hours.

2. All questions require you to read the test data from standard input and write results to standard
output. You cannot use files for input or output. Additional input and output specifications can
be found in the General Information Sheet.

3. No whitespace should appear in the output except between printed fields.

4. All whitespace, either in input or output, will consist of exactly one blank character.

5. The allowed programming languages are C, C++, Python 2, Python 3, and Java.

6. All programs will be re-compiled prior to testing with the judges’ data.

7. Non-standard libraries cannot be used in your solutions. The Standard Template Library (STL)
and C++ string libraries are allowed. The standard Java API is available, except for those
packages that are deemed dangerous by contest officials (e.g., that might generate a security
violation).

8. The input to all problems will consist of multiple test cases.

9. Programming style is not considered in this contest. You are free to code in whatever style you
prefer. Documentation is not required.

10. All communication with the judges will be handled by the PC2 environment.

11. Judges’ decisions are to be considered final. No cheating will be tolerated.



2019 Denison Spring Programming Contest 1

Problem A: Defile

In the game Hearthstone you sometimes get to destroy all your opponent’s minions using a spell called
Defile. The spell works by doing 1 damage to all minions and if any minions are destroyed by it, it will
do another 1 damage to all minions, repeating this until no more minions are destroyed. For example,
in the game below, if the player casts the spell then none of the minions will be destroyed since they
all have health above 1. (Note: The health of a minion is the number on its lower right; you can ignore
the number on the lower left.)

Figure 1: Example board where Defile doesn’t destroy any minions

On the other hand, if Defile is cast on the board below, then the 1-health minion (second from the left
in the bottom row) is destroyed, next the two 2-health minions on the top row are destroyed, followed
by the three 3-health minions (one on the top row and two in the bottom row). Since this destroys all
the enemy minions (all the ones in the top row), this would be considered a successful Defile.

Figure 2: Example board where Defile destroys all enemy minions

The goal of this problem is to determine whether casting Defile will destroy all your opponent’s minions.
(As a side effect some or all of your minions may get destroyed as well.)

Input

Each input starts with integers n m on a single line. (A line with 0 0 indicates the end of input.) The
values n and m (1 ≤ n,m ≤ 7) indicate the number of opponent and player minions, respectively. The
second line consists of the health of the n enemy minions e1 e2 e3 . . . en (1 ≤ ei ≤ 10 for each ei). The
third line consists of the health of the m player minions p1 p2 p3 . . . pm (1 ≤ pi ≤ 10 for each pi).



2019 Denison Spring Programming Contest 2

Output

Each input set should output the case number and a response of either YES or NO depending on
whether all the enemy minions will be destroyed or not, as shown in the Sample Output.

Sample Input

3 4

3 3 2

7 3 3 3

3 4

2 3 2

7 1 3 3

0 0

Sample Output

Case 1: NO

Case 2: YES



2019 Denison Spring Programming Contest 3

Problem B: Focus

In the board game Gloomhaven, player and monster figures move on hexagonal tiles. The monster
figures move towards player figures according to focus rules, which you will emulate in this problem.

A monster always tries to move adjacent to the player figure that is nearest in terms of the number of
moves it has to take to get to the figure. Moves are always along adjacent hexes. If there are multiple
players that can be reached with the same number of moves, the monster moves towards the one with
a smaller initiative value. For example, in the figure below (Fig. 3), the monster in the top left will
move towards Player 1 because this can be accomplished with fewer moves than to Player 3 (two moves
rather than 3) and because Player 1 has a smaller initiative value than Player 2 (10 rather than 20).
All players will have distinct initiative values.

Figure 3: Example of monster movement rule

Input

Each input set starts with the integers r c (1 ≤ r, c,≤ 20) on a line indicating the number of rows and
columns on the map. A line with 0 0 indicates the end of input. The second line consists of the location
of the monster mr mc (1 ≤ mr ≤ r, 1 ≤ mc ≤ c). The third line contains the number of players p
(1 ≤ p ≤ 10). The following p lines have each of the player coordinates and initiative values pr pc pi
(1 ≤ pr ≤ r, 1 ≤ pc ≤ c, 1 ≤ pi ≤ 100). No two figures (monster or player) will have the same position.
All players will have distinct initiative values.

All the positions will be given as row number and column number as shown in the example figure
(Fig. 4) below with r = 4, c = 7. Note that odd numbered rows have no even numbered columns and
vice versa; you may assume that all figure coordinates (both monster and player) will be for existing
tiles.



2019 Denison Spring Programming Contest 4

Figure 4: Example of the hexagonal coordinate system (r = 4, c = 7)

Output

Each input set should output the case number and the player number (starting at 1) that the monster
moves to, as shown in the Sample Output.

Sample Input

4 7

1 1

3

1 7 10

4 4 20

3 7 5

4 7

1 1

3

4 4 10

3 1 20

4 6 5

0 0

Sample Output

Case 1: 1

Case 2: 2



2019 Denison Spring Programming Contest 5

Problem C: Iota

In the card game Iota, players take turns adding cards in lines to a grid to maximize their point total.
In a turn, a player adds 1, 2, 3, or 4 cards in a line, connecting to other cards already in play. (See the
figures below for example grids.) All cards must be placed using the following guidelines:

• All played cards must connect in a single straight line and at least one of them must connect with
the cards already in play. Note that a line may be extended by adding cards to both ends of an
existing line.

• In each line (of two or more cards) created by the placement of cards, each of the attributes (color,
shape, number) should be all the same or all different. For example, a line may have cards all
with the same color, all distinct shapes, and all the same number. Note that since there are only
four colors, shapes, and numbers (and no two cards have the exact same combination of them) no
line can have a length greater than four.

The score for some cards that are placed is calculated by adding the face values (numbers) of the lines
created. If a card played is part of two lines, then its face value is counted twice. Each four card line
created doubles the score for the turn (this can happen multiple times). Additionally, if the player plays
four cards in the turn this also doubles the score for the turn.

For example, consider the grid and player cards shown below.

Figure 5: Card grid

Figure 6: Player’s cards

One possible (non-optimal) play would be the one shown below for a total of 7 + 5 = 12 points (7
points for the two cards played horizontally and another 5 for the vertical line that got created).



2019 Denison Spring Programming Contest 6

Figure 7: Player turn that results in a score of 12

A slightly better play would be to get a line of 4 (shown below) for a total of 14 (4 points vertically, 3
horizontally, full score doubled for getting a line of 4).

Figure 8: Player turn that results in a score of 14

Of course, it is also possible to use all four of the player’s cards as seen in this example with a score of
112 (4 points vertically, 10 points horizontally, full score doubled twice for getting two lines of 4, and
then doubled again for using up all four cards).

Figure 9: Player turn that results in a score of 112

The optimal play is the following for a score of 184 (two vertical lines worth 4 and 9, 10 points hori-
zontally, full score doubled twice for getting two lines of 4, and then doubled again for using up all four



2019 Denison Spring Programming Contest 7

cards).

Figure 10: Player turn that results in the top score of 184

For this problem, you will be given an Iota grid in a legal state and a hand of four cards and you have
to determine the maximum points that can be earned in that turn.

Input

Each input starts with the number of rows, columns, and pieces on the grid r c p on a single line
(1 ≤ r ≤ 50, 1 ≤ c ≤ 50, 1 ≤ p ≤ 100). (A line with 0 0 0 indicates the end of input.) The next p lines
are the pieces already in the grid given as grid positions followed by the shape, color, and number of
the piece ri ci si ki ni (0 ≤ ri < r, 0 ≤ ci < c, si ∈ {CIRCLE, SQUARE,TRIANGLE,CROSS}, ki ∈
{RED,GREEN,BLUE,YELLOW}, 1 ≤ ni ≤ 4). The last four lines of the input are the player’s cards,
specified by the shape, color, and number format used for the grid.

Output

Each input set should output the case number and the maximum points that can be scored on the grid
with the given cards. If no cards can be played legally, then the maximum number of points is zero.

Sample Input

3 4 7

0 2 TRIANGLE BLUE 1

1 0 CROSS RED 2

1 1 CROSS YELLOW 3

1 2 CROSS GREEN 1

1 3 CROSS BLUE 4

2 2 CIRCLE RED 1

2 3 CROSS BLUE 2

CROSS BLUE 3

SQUARE YELLOW 1

CIRCLE RED 4

TRIANGLE GREEN 2

1 1 1

0 0 CROSS YELLOW 3

CIRCLE RED 1

TRIANGLE GREEN 2



2019 Denison Spring Programming Contest 8

CROSS GREEN 1

TRIANGLE BLUE 1

2 2 4

0 0 CROSS BLUE 1

0 1 CIRCLE GREEN 1

1 0 TRIANGLE BLUE 1

1 1 SQUARE YELLOW 1

CIRCLE RED 2

TRIANGLE GREEN 2

CROSS GREEN 2

SQUARE BLUE 2

0 0 0

Sample Output

Case 1: 184

Case 2: 8

Case 3: 0



2019 Denison Spring Programming Contest 9

Problem D: Oral History

The Granville Historical Society has been collecting oral histories for over 200 years. Among the many
things they are trying to sort out is when various residents lived in Granville. But oral history being
what it is – that is, unreliable – they are worried about inconsistencies. They’ve decided to start with
some very basic checks. Some of the information they get is simply when two people lived in relation
to each other. Specifically, given persons A and B, they are told that A lived before B. That is, A died
before B was born. Another type of information is that A and B both lived at the same time, meaning
only that at some time A and B overlapped; no information regarding when either was born or died.
Given a set of information of the two types mentioned, is it consistent? That’s the problem you are
asked to solve.

For example suppose you are told that A lived before B, B and C overlapped, and A and C overlapped.
This would be consistent. (Possible order: A born, C born, A died, B born, C died, B died.) But A
lived before B, B and C overlapped, and C lived before A would not be consistent. (The first and last
imply that C lived before B, which contradicts the second.)

Input

Each input set starts with the integer n on a line. n = 0 indicates the end of input. There follows n
lines of information. Each line is of the form n1 < n2 or n1 = n2. The former indicates n1 lived before
n2, the latter that n1 and n2 overlapped. Both n1 and n2 are uppercase letters, so there is a a limit
of 26 possible names. The relationship between any pair of names will appear at most once in any one
input case.

Output

Each input set should output the case number and a response of either YES or NO depending if the
information is consistent or not, as shown in the Sample Output.

Sample Input

3

A < B

B = C

A = C

3

A < B

B = C

C < A

3

A < B

B < C

C < A

0

Sample Output

Case 1: YES

Case 2: NO

Case 3: NO



2019 Denison Spring Programming Contest 10

Problem E: Rational Moves

Define a “move” on a positive rational number (reduced to lowest terms) to be the addition of 1 to
either the numerator or denominator, followed by reduction to lowest terms. For example, from the
rational 1/2, you can move to the rational numbers 1/1 and 1/3. For this problem, you will determine
whether it is possible to get from one positive rational number to another in a given number of moves.

Input

The input starts with the number of test cases (n > 0). The following n lines have the test cases, one
per line. Each test case will consist of the positive integers p q r s m (0 < p, q, r, s ≤ 20, 0 < m ≤ 40)
where the starting rational is p/q, the target rational is r/s, and the maximum number of moves is m.
You may assume that p/q and r/s are already reduced to lowest terms (i.e., p and q have no common
factors and r and s have no common factors).

Output

For each input, you should output the case number and YES or NO depending on whether it is possible
to get from p/q to r/s in at most m moves.

Sample Input

4

1 2 1 1 1

1 2 1 3 2

1 2 1 4 1

1 2 1 4 2

Sample Output

Case 1: YES

Case 2: YES

Case 3: NO

Case 4: YES



2019 Denison Spring Programming Contest 11

Problem F: Will Salmon Please Help Me?

As is well known, salmon return to their place of birth to die. For this problem, you will keep track of
a population of salmon and determine how long it takes for all of them to die out.

We will suppose that salmon start out on a circular river (that’s a thing, right?) as depicted below.
Each salmon will be moving either clockwise or counterclockwise at the rate of one cell per minute.
Whenever a salmon re-enters its starting cell, it dies and is removed from consideration. When a pair
of salmon both occupy the same cell (and neither just died) they both reverse direction.

For example, in the figure below, the river has 12 cells (numbered 0 to 11) and there are two salmon
in it, one at position 0 going clockwise and another at position 6 going counterclockwise. After three
minutes, the two would both enter cell 3 and in another three minutes both would return to their
original cells and die. Thus, the total time for them to die would be 6 minutes.

Figure 11: Example 1 for salmon movement

In this second example below, there is a third salmon at cell 11 moving clockwise. Note that this salmon
will never occupy the same cell as either of the other two (in the fourth minute step it will enter cell
3 which was just vacated by the other two) and hence it will just take 12 minutes to get back to its
starting cell. As a result, the total time for this population will be 12 minutes.

Figure 12: Example 2 for salmon movement

Input

Each input set starts with the length of the river and number of salmon r s (1 ≤ r ≤ 1000000, 1 ≤ s ≤
100000). A line with 0 0 indicates the end of input. The next s lines will consist of the starting position



2019 Denison Spring Programming Contest 12

and direction of each salmon. Each starting position will be an integer between 0 and r − 1 (inclusive)
and the direction will be either a C (clockwise) or CC (counterclockwise). No two salmon will ever start
in the same cell.

Output

Each input set should output the case number and the number of minutes for all the salmon to die off.
The answer will never exceed 1 billion.

Sample Input

12 2

0 C

6 CC

12 3

0 C

6 CC

11 C

0 0

Sample Output

Case 1: 6

Case 2: 12

Extra challenge for after the contest: In all the input cases the salmon will all eventually die out.
Is it possible to construct a case in which the salmon bounce around forever? Why or why not? I don’t
know the answer to this as yet, so please let me know if you find an example where they bounce forever
or a proof that they cannot.


