A Sensitive Order Notation for Performance Expression:
Joan Krone, Mathematics and Computer Science, Denison University, Granville, OH 43023.

William F. Ogden, Computer and Information Science, Ohio State University, Columbus, OH 43210.

Murali Sitaraman, Computer Science, Clemson University, Clemson, SC 29634.

Performance of algorithms is expressed typically imseof the sizes of parameters using big-O notation
to compare functions over natural numbers. We presemra general notation that allows the domains
of the functions used to document performance to berampitnathematical spaces instead of natural
numbers. The generality permits presentation of mensitsve performance expressions naturally in
terms of arbitrary values of objects without a neednietricization. The proposed notation is useful in
describing performance of generic components and subtlatioas in performance of common

algorithms, such as sorting. It is compositional am&lagbmpatible with standard big-O notation.

Keywords — analysis of algorithms, formal methods, performaeealuation, program correctness,

programming languages, program specification, software exgige and specification languages.

1. ASENSITIVE ORDER NOTATION

The standard approach to express the running times oitligsiis in terms of input sizes. Using
the big-O notation, an algorithm that takes time f{n)input size n, can be documented to take time
O(g(n)) where the domains of f and g are the set airabhumbers. When the input to an algorithm is a
number, then the big-O notation is both adequate and apgieopr In object-oriented computing,
however, the inputs to computations are often completageer types whose entries are complex types

themselves. For an example, consider the time to adjgy of arbitrary entries, such as trees. & th

! This work is supported in part by the National ScienaeBation under grants CCR-0081596 and CCR-0113181.
Correspondencécrone@denison.edu

performance is expressed as O(n) as is typically dorterins of n — the size of the list — then the
expression is inadequate. This is because a list ooga few large trees may take much longer to copy
than a much longer list containing empty trees. To igeomore meaningful expressions using big-O
notation, it is necessary to define a metricizing fiomcthat converts complex objects such as lists of
trees of arbitrary information to a number. It ifusto have a notation that allows performance to be
expressed using functions on arbitrary mathematical sptwd characterize the abstract values of
programming objects. A straightforward generalizatiothefbig-O notatiotto functions over arbitrary
spaces is not possible, because the definition ratiesatural number ordering to define an exclusionary
set. We propose the following more sensitive definifior performance expression for computations

over non-trivial objects whose value spaces arerarpit
Definition: Given f, g: Dom- R, f(x) is O(g(x)) iff (OA: R*, OH: R 00 x: Dom, f(x)< AG(x) + H).

For two timing functions f and g mapping a computational doam to the real numbers, to
say that f(x) is O(g(x)) is to say that there is sopositive acceleration factor A and some handicap H
such that for every domain value x, f&)AIG(x) + H. If we think of f and g as representing comyggtin

processes, f being big O of g means that f is not galbefaster than g. If g is run on a processor A

times faster than f's processor and also given a reaaoHs then g will beat f on all input data x.

The new notation is upward compatible with big-O in Hijd for problems where size-oriented
performance expressions are sufficient, the new wotatields the same expressions. In an electronic
appendix, we prove that the new definition has desiradapositional properties. We have defined

corresponding notations f@, 6, and o, and established their properties as well. r@steof the paper

2The big-O relation between two natural number functierdefined in [1]: Given f, gN - R, f(n) is O(g(n)) iffC positive
constants ¢ andyrilf(n) < clg(n) whenever iz n,.

illustrates the use the new notation considering bgtymg and sorting (whose performance can vary

from linear to quadratic depending on the permutation oétiees in the initial list).

2. DAT ABSTRACTION MOTIVATION FOR GENERALIZING BIG-O RELATION

To motivate performance analysis when objects take tralues from different mathematical
spaces, we begin with a formal specification of a t@mihponent. The specification in Figure 1 is given
in the RESOLVE notation [2], though any model-based §patidn language can be used. Specification
of different abstract data types may use other standatiematical models such as integers, sets,

functions, and relations, in addition to tuples and strings

The List component provides a List type and operationaanipulate objects of List type. It is
parameterized by the type of entries in a list. Wewew a List abstractly as a pair of strings over th
type of entries in the list, denoted by the cross prosipate Str(Entry) X Str(Entry) in the figure. Here,
the first string contains the list entries preceding ¢hrrent position and it is namé&dec; the second
string is the remainder of the ligRem. Initially, a List is a pair of empty strings, i.€/\, A). In the
specification of an operation, tihequires clause, when present, specifies an obligation focéher. The
ensures clause is a guarantee from a correct implementatihjtadescribes how the ligt is updated.

Here,#P denotes the incoming value BiandP denotes the outgoing value.

Conceptualizing a List object as a pair of strings matkeasy to explain insertion and removal
from the “middle”. For example, suppose that (<3, 5>, <4>),is the abstract value of an Integer list.
When the Insert operation is called to a add 7, thealement is inserted at the beginning of Rem
string of the list and the resulting list becomes (<3, %5 4, 1, 9>). A call to the Remove operation
reverts the list to (<3, 5>, <4, 1, 9>). Neither ofstn@perations changes the insertion position. To

change the position, Advance or Reset needs to bd.célldvance moves the list position so that the list

(<8, 5>, <4, 1, 9>) becomes (<3, 5, 4>, <1, 9>). Resettbetsmsertion point to the beginning by
making the list A\, <3, 5, 4, 1, 9>). Neither of these operations charges\erall contents of the list.
Since the operations all have easy specificationgerims of the mathematical model, and since the
underlying linking pointers in the implementation are hgdidden, reasoning about client code is much

simplified with this abstract model [2].

Concept List Template {ype Entry);
uses Number_Theory, String_theory;

Type List [0 Prec:Str(Entry) X Rem:Str(Entry);
exemplar P
initialization ensures |P.Prec| = @nd |P.Rem| = 0;

Operation Insert (alters E: Entry;updates P: List);
ensures P.Prec = #P.Praand P.Rem = <#E> #P.Rem;

Operation Remove (eplaces R: Entry;updates P: List);
requires |P.Rem| > O;
ensures P.Prec = #P.Praand #P.Rem = <R> P.Rem,
Operation Advance (updates P: List);
requires |P.Rem| >0
ensures P.Prec P.Rem = #P.Prec#P.Remand |P.Prec| = |#P.Prec| + 1,
Operation Reset ...
Operation AdvanceTo End ...
Operation PrecLength ...

Operation RemLength ...
end List_Template;

Figure 1: Specification of aList Sort Operation
Using the List abstraction and the new notationtithe to copy a list containing arbitrary entries

can be expressed naturally as Q(Occurs_CﬂE,P.Preco P.Rem)Dur copy entrye)) Where the domain of
E:Entry

the function is the cross product of the matherahtipace of list objects (i.e., Str(Entry) X Str{i)

and the time to copy an arbitrary entry (i.e, acfiom from Entry to Real numbers). In the exp@ssi
Occurs _Ct denotes the number of occurrences of a partiarény in a given string. The expressive
power necessary for this example is typical of wisaheeded to express the performance of typical

computations on generic objects with mathematiossiractions.

3. EXAMPLE ANALYSIS

The second example illustrates how the new notatiakes it possible to capture the sensitivity
needed for more precise expressions that dependilaas of objects, not just sizes. We consider an
algorithm for sorting a “list”, though most othelgarithms discussed in data structures courses rais
similar issues. The running time complexity of ihsertion sort procedure is given usually as €) (n
where n is the number of elements in the listthédfexpression is based merely on the lengtheolidt) it
cannot make any distinction between the sortinggifor different lists of the same length. Theetiior
insertion sort is linear on a sorted list, andhdreases to quadratic time complexity graduallyedepmg
on how unsorted the list is. To address this iggréally, a best case estimate, sucl&s) is given in
analyzing the algorithm. The new notation makesate apparent that the insertion sorting takesafin
time in some cases and quadratic time in some cabesving a direct correspondence between the

particular permutation of entries in a list and thening time of insertion sort.

Figure 2 contains the specification of an operatmrsort a list. The operation is specified to
reset the List, and guarantee that the remaininggbdhe list is sorted and is a permutation & émtire
incoming list which is#P.Prec concatenated witi#P.Rem. The definition ofls Ascending Order (or
more preciselyls Non Descending_Order) should be given in terms of the definition used gorting
entries and it is omitted here due to space coraides. Figure 3 contains a procedure to implertient

list sorting operation.

Operation Sort_List(updates P: List);
ensures P.Prec s\ and In_Ascending_Order(P.Renaijd
P.Rem Is_Permutation #P.Prec o #P.Rem;

Figure 2: Specification of aList Sort Operation

Procedure Sort_List(updates P: List);

Var P_Entry, S_Entry: Entry;,
Var Sorted: List;
Reset (P);
While Length_of Rem(P# 0do
Remove(P_Entry, P);
Iterate
When Length_of Rem(Sorted) =0

do exit;
Remove(S_Entry, Sorted);
When Lss_or_Comp(P_Entry, S_Entry)

do Insert(S_Entry, Sortedexit;
Insert(S_Entry, Sorted);

Advance(Sorted);
repeat;
Insert(P_Entry, Sorted);
Reset(Sorted);

end;
P =: Sorted;

end Sort_List;
Figure 3: Insertion Sort Procedure
The code in Figure 3 uses a local frted. Both the inner and outer loops maintain the

invariant of keeping the elements in tharted list sorted. We have omitted a formal statemdrthe
invariant in the figure because it is not necesfaryhe present discussion, though it is usefyiresent

it at least at an informal level. The strategytwd puter loop is to place successive vaRdsntry from

the list P into their proper place in the liSorted. Thelterate...repeat construct is a “for ever” loop
that is terminated when one of the exit conditisrsatisfied. The task of the inner loop is toifims the
Sorted list appropriately for the insertion &f_Entry. In the inner loopLss or_Comp iS a generic
procedure to compare two entries. In the lasestant of the procedure, a swap statement, dengted b

:=:, is used to transfer the result from &oeted list back to the paramet& the list that is to be sorted.

Swap operator can be implemented in constant tymexthanging references, without deep copying and

without introducing aliasing.

To analyze the efficiency of the insertion sortadgorithm, we examine first the inner loop and
then the outer loop to get a duration estimateefach. As is the case in the classical performance
analysis, we assume that all List operations aed_t8 Or_Cmp operation to compare entries take a
constant time, though this assumption is not necgsshen using the revised notation. Based on the
assumption, in classical analysis we note thabtlier loop may execute at most n times (wheretheis
length of the input list). The inner loop mighteexte a maximum of n times if the next entry teabibe
inserted into the sorted list needs to be compauiidd all the previously inserted entries into thist.

This leads us to an overall worst-case compleXi® (@) for the insertion sort procedure.

For a more precise analysis, note that wheneveintiez loop is entered, the preceding string of
the Sorted list is empty because it is reset irotter loop. The inner loop compares each edtBntry
in the remaining string of the sorted list with @atryP_Entry. After comparison, the entry is inserted
back into the list and the list is advanced. Time ffor the inner loop depends upon the numbentfes
to be compared with the next item before finding tbrrect place for insertion, in particular, thenber
of entries in Sorted list that are less than or manmable toP_Entry. To get the increased precision, we
need to define a function on strings of entoethat counts how many entriesanare less than an entry
E and hence would be “advanced” over when posit@Eimftera has been sortdd For this reason, we

define aRank(E, a) function and states some of its properties.

Inductive definition on a: Str(Entry)of
Rank(E: Entryp): N is
(i) Rank(EA) = 0;

® We have chosen to count the number of calls to Advance aperdtthe end of the inner loop rather than the number of catieto
comparison operation. In order of magnitude analysis, howthisrdoes not make any difference.

Rank(Ee) +1 if D < E,
Rank(E,) otherwise’

(i) Rank(E,a - <D>) :{
In the definition *” denotes concatenation ard denotes a generic notion of “less than” on type
Entry. Given this definition, it is easy to seattlthe duration for the inner loop is proportiobal
Rank(P_Entry, Sorted.Rem) at the beginning of the loop (&ank(P_Entry, Sorted.Prec) at the end of
the loop). Rank counts the number of callsAtivance that are necessary to position the list properly.
The outer loop inserts the next entry into Hoeted list. Since the time of the outer loop dependsrup
the cumulative effect of positioning successiveriestfrom the listP into the Sorted list, we define a
“preceding rank” functio®_Rank(a). For an example, suppose that we are sortiig} with the
abstract value/, <3, 5, 4, 1, 9>) in the ascending order. Aftgo titerations of the outer loop, the
Sorted list becomes/A, <3, 5>). The time to insert the next entry 4ategs upon the “rank of 4” in the

string <3, 5>. To compute the cumulative time dd aach entry, we defiri2 Rank as below:

Inductive def. on a: Str(Entry)of P_Rank(@): N is
(i) P_Rank\) = 0;
(i) P_Rank(@ - <E>) = P_Rank@) + Rank(Eq);
Using the formuleP_Rank, we can see that, it takes a lot less time to tbertist (\, <9, 5, 4, 3,
1>) in ascending order than the ligt, (<1, 3, 4, 5, 9>), though the two lists have theas 5 entries. In
the first case, no advances are necessary. Isettend case, 10 advances are necessary. Usingwhe
notation, we can give a precise estimate of thequore as O(Max(|#P.PrectP.Rem|, P_Rank(
#P.Pree#P.Rem)), where the domain of the function & lathematical space of lists (i.e., Str(Entry)
X Str(Entry)). The maximum is necessary is thisregpion, because even when no advances are
necessary, the insertion sort procedure givengarei3 takes at least linear time because every isnt

moved from the initial list to the sorted list imet process.

An important theorem abowR_Rank is thatP_Rank(a) < |a{{Ja]-1)/2, so it follows that the
duration of theSort_List procedure can be expressed using a natural ndoretion more classically, as:
O(|#P.Prec#P.Ren|). Thus the new notation can be used to spedifynibich less exacting estimate
based on sizes if we wish. But it allows more geitsi when we need a sharper estimate is needadd.
course, in order to use this definition, it is resagy to have mathematical support in the form of
theorems about the proposed definition. For exampe have proved the additive property below (in

the electronic Appendix) so we can apply the amatgsa succession of operation invocations:

Theorem OML1: If fi(X) is (O g(x)) and §(x) is O(a(X)), then f(x) + f2(x) is O(Max(g(x), &(X))).

4. DISCUSSION

Big-O notation is designed to deal with comparisbfunctions whose domains are natural numbers. It
IS necessary to generalize the notation to funstiover arbitrary mathematical spaces, such as those
might be used in specification of generic, abstidata type objects. The generality of the proposed
notation is especially useful in the context ofsale components [3], where the context of usets n
known in advance, and hence, performance needs texpressed making few assumptions about
component usage. Performance specifications acessary for components to reason about the
performance of component-based systems in a motaghion. To avoid the rapid compounding of
imprecision that otherwise happens in such systénssalso essential to use high precision peréoroe
specification mechanisms, such as the one presdmwted A significant benefit from an educational
perspective is that the new notation permits aebathderstanding of the underlying algorithms. For
example, understanding the performance estimatesertion sorting given in this paper clarifies &

student how it is intrinsically different from a lilole sorting algorithm, though both algorithms have

O(rf) worst case complexity. The direct style of parfance specification is much more natural than

using an intermediary natural number.

5. REFERENCES

[1] Aho, A., Hopcroft, J., Ullman, JData Structures and Algorithms, Addison-Wesley, 1983.

[2] Sitaraman, M., Atkinson, S., Kulczycki, G., Weide,W., Long, T. J., Bucci, P., Heym, W., Pike,
S., and Hollingsworth, J. E., “Reasoning About #afte-Component Behavior,” in Frakes, W.B.,
ed., Software Reuse: Advances in Software Reusability (Proceedings Sxth International Conference
on Software Reuse), Springer-Verlag LNCS 1844, 2000, 266-283.

[3] Sitaraman, M., Krone, J., Kulczycki, G., Ogden, %hd Reddy, A. L. N., “Performance

Specification of Software Component&CM SIGSOFT Symposium on Software Reuse, May 2001.

[4] J. M. Wing. A Specifier's Introduction to Formal Meds.|EEE Computer, 29(9), Sep. 1990, 8-24.

