KEEPING POINTERS OR REFERENCES UNDER
CONTROL: A COMPONENT BASED APPROACH TO LIST
BASED DATA STRUCTURES

Joan Krone
Denison University
Granville, Ohio 43023

krone@denison.edu
ABSTRACT
For students and practitioners alike, the use of dynaariables (pointers or
references) introduces not just the probabilitynafre errors than for static

variables, but errors that are by far more difficoltfihd and correct. Here we see a
way to address this problem by using a component based appadauilding
software. This approach designs a generic list-bagedtste that can be used to
build a variety of other components without the needotit in dynamic variables
except in the list structure. Of course, this approsgiot limited to academic use. It
is the prescribed approach for any good software engineeantger.

INTRODUCTION

Many textbooks on data structures make distinctions aim@fementation
level, rather than at the abstract level. For eedlamn [Stubbs & Webre], there is a
distinction made between stacks according to whethey #ne implemented using
arrays or by using pointers. Similarly, in [Singh and §}ap distinction is made
between queues implemented with arrays and those implecheith pointers (lists).
In [weiss] there is a distinction between a list congmrand a sorted list component.
These distinctions are often made not just fos listacks and queues, but for a variety
of other structures as well. As a result of seeiegdhdistinctions, students do not get
a good sense of what a useful component is.

Many textbooks [Corm, Aho,] introduce the concepts adrim@&tion hiding,
component based software, abstract reasoning, and etfeware engineering
principles [Sommerville and Pressman], but fail tolofwl up with supportive
examples. Students need to learn these importantgdaacand the best way to do so
is to see good examples and then to write some af then components, based on
these principles.

Software engineering principles advocate informationingid a principle
clearly violated when these distinctions are mada&esa client who needs a stack
component should not need to think about how the stackpkmented, but rather
what the abstract behavior is. Of course, performarfoemation would be useful to
a client, but that should be given in terms of analgdithe operations, not the
implementation details. For example, if a clientatd that there are two possible
stack components available, there should be no distmetith regard to behavior.
For performance, the client can be told how long push@®ps or clears take without
revealing the underlying details of implementation. hedtuseful information would
be whether the stacks have a limited depth or whethgrdae grow as you need
them. Then the client can do whatever reasoning needs done at a level of
abstraction that frees him from being forced to worryuhinks (pointers).

We show here how it is possible to design a linked stred¢hat can be used in
a variety of ways, adhering to the principle of imf@tion hiding and allowing
reasoning to be done at an appropriate level of abstnacti

A BASIC LIST STRUCTURE

Here we present specifications for a linked structuré ¢ha be used by a
client who will not need to know anything about implem&atadetails. The most
common implementation can be done using pointers (@ava, references). To make
the component generic, one can use a generic templai¢ or use objects as the
entries in Java.

We conceptualize the linked structure (a list position) gmia of strings,
called the Prec(eding) and Rem(ainder), suggesting thauthent position in the list
is at the beginning of the Rem patrt, i.e., the Prechmmtbeen visited. The elements
in the strings are the entries of whatever generic tigpeclient may choose when the
list is instantiated. Since this component is genaiih regard to the entry type, we
think of the component as providing a type family, rathen thaingle type, hence the
Type_Family definition.

For example, if we want to build a list of characterse conceptualization
might look like the pair (rgmqg, saf) where Prec = rgmugiaating that those
characters have been visited and we are ready tadhesRem = saf, s being the next
character to visit.

An Advance operation would move the current position so that giepbsition
would look like (rgmgs, af). AReset puts the current position back at the beginning of
the list, yielding {\, rgmgsaf) wheré\ indicates the empty string, showing that no
part of the list has been visited.

Length_of Remainder returns the number of entries in the Rem part ofishe
so for (rgmq, saf), Length_of Remainder would returrA8vance to End places the
current position at the end of the list. Given thst Iposition (rgmq, saf_,
Advance_to_End results in (rgmgsaf), since the Rem part has no elements in it,
indicating that all of the elements have been visited.

To put in a new element, there is thresert operation which takes the new
entry passed in and places it at the beginning of the R&mnif we have list position
(rgmq, saf) and call for an insert of t, the resufrégng, tsaf). If a new element is to
be added to the beginning of the list, the end of the disthe middle, the same
operation holds, since one can first call Resetdvafice_to_End and then call Insert.
This is a real advantage over many list structuresribad to have several ways to
insert, depending on where you are in the list.

Finally, we might want to remove an item. TRamove operation removes the
entry that is currently at the beginning of the Rem phtti® list. For example, given
list position (rgmqg, saf), a Remove would yield (rgmq, ajust as for inserting, a
client can first advance to the position where the &y is to be placed, when
removing and entry, a client can first advance to the ¢hatyis to be removed and
then call Remove. This means that one simply catisove, but does not need to tell
which element to remove, since that choice is letheuser of the list. Hence, only
one remove operation is needed, since it works whethemames to remove an
element at the beginning or at the end or anywheretincles.

Two additional operations add a lot of power to this compbnEirst, a binary
operation that takes two list positions and swaps teemainders. This operation is
quite powerful because it allows the swapping of two detaplists, if resets are
performed first, or the exchange of any parts of twa let desired. For example,
given listl = (rgmq, saf) and list2 = (ca, bprw), al talSwap__Remainders will
result in listl = rgmq, bprw and list2 = (ca, saf).

Finally, we haveSwvap Prev_Entry that allows one to exchange a new entry
with the last entry in the Prec part of the list.wl start with (rgmq, saf) and make a
call to Swap_Prev_Entry with the parameter x, the restgmx, saf).

Here are the specifications:
ONE-WAY LIST TEMPLATE

ConceptOne_Way_List_Templateype Entry;eval Max_Total Length: Integer);
usesStd_Integer_Fac, String_Theory;
requires Max_Total Length > O;
Family List_PositionlJ Cart-Prod
Prec, Rem: Str(Entry)
end,
exemplarP;
Initialization
ensuresP.Prec =A and P.Rem =A,

Def Var List_Length(i:IN): N = (
|List_PositiorDenotg(i).Prec| + |List_PositioDenotgi).Rem|);
List_Position.LSN
Def Var Total_Length:N = (Z List_Length(i));
i=1

Constraint Total _ Length< Max_Total_Length;

Oper Advance(upd P: List_Position);
requires P.Rem# A ;
ensuresP.Pree P.Rem = @P.Prec@P.Renmand |P.Prec| = |@P.Prec| + 1;
//Imoves one position to the right

Oper Reset(upd P: List_Position);
ensuresP.Prec =Aand P.Rem = @P.Prec@P.Rem;
//Imoves to the beginning

Oper Length_of _Rem(est P: List_Position): Integer;
ensuresLength_of Rem = (|P.Rem|);
/lreturns the length of the remainder

Oper Insert(alt New_Entry: Entryupd P: List Position);
requires Total_Length < Max_Total Length;

ensuresP.Prec = @P.Preand P.Rem =(@ New_ Entry)o @P.Rem;
/linserts a new entry at the current position

Oper Remove(p! Entry_Removed: Entryypd P: List_Position);
requires ---

ensuresP.Prec = @P.Prend @P.Rem =Entry _ Re movegl P.Rem;
/lremoves the entry at the current position

Oper Advance _to_End(pd P: List_Position);
ensures: -
//Imoves to the end of the list

Oper Swap_Remainders(pd P, Q: List_Position);
ensuresP.Prec = @P.Praand Q.Prec = @Q.Prec
and P.Rem = @Q.Rerand Q.Rem = @P.Rem;
/lexchange the remainders of 2 lists

Oper Clear_List(clr P: List_Position);
/linitialize a new list

end One_Way List_Template;

The specifications given here are mathematicallgcige. Depending on
student background and department philosophy, oigétnchoose to do informal,
natural language specifications instead. Howegw&gision can be achieved only with
formal specs. Whatever form one chooses for tlserg#ion of the list structure,
students can follow it up with an implementatiorCifi+ or Java or whatever language
the class prefers. Most students do see very @atlyeir academic career the use of
requires and ensures clauses, some more formabthars.

A POSSIBLE IMPLEMENTATION

Included here is an implementation in C++. A heafile (.h) for a class
template is presented in which the structure chad®mws a node type and some
pointer to node types, all in the private sectemthat clients are not forced to worry
about those pointers. The idea is that therebeild current pointer that keeps track of
where in the list one is. The pre_current traaddsg behind it, making it easy to do
inserts, and the front remains at the beginnintheflist, allowing quick resets to take
place.

#include <iostream.h>
template <class T>
class List
{
public:
List();
/I Create empty List
void Advance();
/*Requires |Rem|>0
Ensures @Rem = x + Rem
Prec = @Prec + x*/
T Peek();
[*Requires List is not empty
Ensures Peek = Rem.c*/
int Length_of _Rem();
[*Requires True
Ensures Length_of_Rem = |Rem| */

void Reset();
[*Requires True
Ensures Prec is empty, Rem = @Prec + @Rem*/
void Advance_to_End();
[*Requires True
Ensures Rem is empty, Prec = @Prec + @Rem*/
void Insert(T);
[*Requires True
Ensures Prec = @Prec, Rem = Entry + @Rem*/
T Remove();
/*Requires Rem is not empty
Ensures Prec = @Prec, @Rem = Remove + Rem*/
void Swap_Rem(List);
[*Requires True
Ensures L1.Rem = @L2.Rem, L2.Rem = @L1.Rem?*/
T Swap_Prev_Entry(T);
[*Requires |Prec| >0
Ensures Swap_Prev_Entry = x, where
@Prec = A + x and Prec = A + Entry*/
int Length_of _Prec();
[*Requires True
Ensures Length_of_Prec() = |prec|*/
void Clear_List();
[*Requires True
Ensures Prec is empty and Rem is empty*/
private:
struct node
{
Tc;
node * next;

node * prec;
node * prerem;
node * rem;

Also included is a .cpp file showing the construdtmat sets up an empty list
and the insert that shows how to put in a new entrgrever the current position is. It

is significant that there is no need to have sdwases. The same insert can be used

whether one is at the beginning, the end, or soreesvin the middle of the list.
#include "List.h"

template <class T> List<T>::List()
/[Constructor for empty list

{
prec = new(node);
prec->next = NULL,
prerem = prec;
rem = NULL;

}

template <class T> void List<T>::Advance()
/[Advance to next Node in list...
/li.e. move first element of rem to end of prec

if (rem != NULL) //if rem is not empty
{

prerem = prerem->next; //advance rem pointers
rem = rem->next;

}

template <class T>
T List<T>::Peek()
//IReturns element at current position

{
if (rem != NULL)
return rem->c;
else
{
cout << "Error: No value in rem to Peek!";
return prerem->c;
}
}

template <class T>
int List<T>::Length_of Rem()
{
node * temp;
temp = rem;
int n=0;
while (temp '= NULL)
{
n++;
temp = temp->next;
}

return n;

}

template <class T>
void List<T>::Reset()
/starts at beginning of list
{
prerem = prec;
rem = prec->next;

}

template <class T>
void List<T>::Advance_to_End()

{
if (prerem->next = NULL) //checks to see if list
empty, or already at end

while (prerem->next->next != NULL) //advances un
rem is last
prerem = prerem->next;
rem = prerem->next; //rem points to last element

}

template <class T>

til

void List<T>:Insert(T ch)
/[Puts item in list at beginning of rem

{

rem = new(node)y//make new node for ch

rem->c = ch; /Iput ch in the new node

rem->next = prerem->next; /Imake new node point t
old rem

prerem->next = rem; /Imake prerem's node point to
new rem
}

template <class T>
T List<T>::Remove()
/IRemove node and return item stored there
{
if (rem != NULL)
{
T temp = rem->c; //hold value to be returned
rem = rem->next; /Imake rem point to node after
one removed
delete prerem->next;
prerem->next = rem;
return temp;

}
else
{

cout << "Error: No node at current position to

Remove!";
T nil;

return nil; /lreturn junk

}

}

template <class T>
void List<T>::Swap_Rem(List L)

{
prerem->next = L.rem;
L.prerem->next = rem;
rem = prerem->next;
L.rem = L.prerem->next;
}

template <class T>
T List<T>::Swap_Prev_Entry(T ch)

{
T temp = prerem->c;
prerem->c = ch;
return temp;

}

template <class T>
int List<T>::Length_of Prec()

{
node * temp = prec;
intn=0;
while (temp != rem)
{

temp = temp->next;
n++;

return n;

}

template <class T>
void List<T>::Clear_List()
{

node * temp = prec->next;

node * oldtemp;

while (temp '= NULL)

{
oldtemp = temp;
temp = temp -> next;
delete oldtemp;

}
rem = NULL;

prec->next = NULL,
prerem = prec;

The usual kinds of pointer manipulation are usethercode, giving students
the opportunity to learn how to use them. Howetle,incentive is to make sure this
list template is well done and that it works cotiegcwith the idea of treating it as
reusable an OTS (off the shelf) component in theréu

In the implementation ®eek operation has been added for convenience to
allow looking at the current entry without removimgven though this could be done
using the sequence of calls: remove, copy, arettins

Next we turn to an example that uses the list tateptomponent, taking full
advantage of the dynamic nature of it without negdo reinvent nodes and pointer.
In fact, pointers do not show up at all.

STACKS

We show here a stack component which can growrmkshs desired without
using pointers directly. Suppose we want to satisé following specifications for a
stack. As before, one might choose a less fornaglte write the specifications, these
being mathematically formal. Users can think alibetr stacks at the purely abstract
level without regard to implementation details.

First we look at a specification: As with the Jlisiur specifications are
mathematically formal, but depending on the levie$tadents and their background,
one might write the description is some other foingluding natural language,
although in order to be precise, mathematical $ipations are encouraged.

ConceptBdd_Stack_Templats(pe Entry;val Max_Depth: Integer);
usesStd_Boolean_Fac, Std_Integer_Fac, String_Theory;
requires Max_Depth > O;

Type_Family Stackl Str(Entry);
exempla S;
constraints |S|< Max_Depth;
initialization
ensuresS =A;

Operation Pushyar E: Entry;var S: Stack);
requires S| < Max_Depth;
ensuresS = <@E> o @$&and Entryls_Initial (E);

Operation Pop {ar R: Entry var S: Stack);
requires S #A;
ensures@S =<R> o0 S;

Operation Is_Empty preservesS: Stack): Boolean;
ensuresls_Empty = (S #A);

Operation Is_Full(preservesS: Stack): Boolean;
ensuresls_ Full =(|S| = Max_Depth);

Operation Clearfar S: Stack);
ensures S =A
end Bdd_Stack_Template;

Here we define a stack to be a list_position. Sdient who is looking for
reusable components would see the specificationa fst position and choose it to
act as the basis for creating the type stack. UdshRn entry, say E, all one needs to
do is call S.Reset, followed by S.Insert(E), wh8rbas been declared to be a stack,
via syntax Stack<T> S where T is whatever typeesiréd for the entries. There is no
need for setting up nodes or references or movimg.l All of those activities are
taken care of by the list component. All the staciplementer needs to do is
understand the specs for the list and use thenr@iogly.

A Pop is achieved by first doing a Reset and theReanove. To check
whether the stack is empty, one can do a Resdhandcall Length_of Rem.

What is equally important is that now a client bé tstack will not need to
know anything about lists or pointers, becausecti@t will simply declare a stack
and make appropriate calls to Push and Pop, ledkengnplementation details to the
writer of the stack component.

This approach results in complete adherence tgtimeiples of information
hiding and separation of concerns.

QUEUES

Using the same list component we can implement epi@s well. A typical
specification for the type Queue includes operatiBnagueue, Dequeue, Length, and
possibly a Peek to see what the first element tkowt having to remove it. In the
interest of space, such specs are not included beree both lists and stacks have
been developed in full. Conceptually, a queue ®rang whose operations allow
access at both ends, one end for putting in newesntand the other for removing
them, hence providing a FIFO (first in first ougpability, as opposed to the LIFO
(last in first out) given by the stack.

A programmer who wants to do an implementation thédws dynamic
growing and shrinking need not become involved \aitly pointers or references, but
rather can simply set up the type queue as a bsitipn, similarly to the way we did
the stack template.

To do an enqueue, one can make a call to Resewfadl by an Insert. To
dequeue, we make a call to Advamce_to_End folloledinsert. All of the pointer
work was done in the list_position, leaving the wupiewriter to reason at the
appropriate level of abstraction, rather than negtth worry about setting up nodes or
links.

A client of the queue component will simply callgeeues and dequeues,
doing all thinking and reasoning at that level with any need to worry about low
level detalils.

Perhaps most important is the fact the once theplisition has been correctly
implemented, any clients can do their testing aabudging in terms of stacks or
gueues or whatever other component they are workingvithout any need to check
the pointer details, since those things have ajrbaen checked for correctness before
being made available for use as OTS (Off The Skelffware.

INSERT SORT

As still another example, we consider what is samet called “an ordered
list,” and treated as a different component fronfisa Here we see that such a
distinction is not necessary at all, since one maduce an ordered list without ever
using a pointer or reference. We can simply useligh_position as defined, and as
new items are inserted, we advance along therigtwe find the position we want to
satisfy the ordering requirement and then callinse

For example, suppose we have the following charaste want to put into a
sorted list: t, a, c, X, e, w.

First we call Insert on t, creating a list of omgrg that conceptually looks like
(A, t). Next, to insert the a, we use a loop to Adeauntil we find an entry the is
alphabetically past the a. In this case, that appight away. As soon as we see the
t, we stop the advancing loop and do an Insertjtrieg in (/\, at). Next we Reset and
then Advance until we find an element past c. Tappens at the position, (a, t).
Calling Insert results in (a, ct). Now Reset andttue with the x. This causes us to
advance until we reach the end of the list wheredwean insert, getting (act, x). We
continue in this way until all of the elements hdveen entered.

There is no need to even think about referencgmters, since all of those
details are in the list_position component. Thegpammer can concentrate on the
task at hand, namely putting values in alphabeticdér (or whatever order the type
requires), the appropriate level of abstractiontis problem.

Here are two versions for implementing insert song with character entries,
one with integer entries:

#include <iostream.h>
#include "List.cpp"

void main()

{

T

/lInsert sort for characters//
T

cout << "Enter a string of characters terminated w ith

0" <<
/I endl;

List<char> L; /IDeclare a list of characters named L

char c;

cin >>c;

L.Insert(c); /[Puts first value in L

cin >>c;

while (c '="'0") //Waits for O input to stop

{

if (c < L.Peek()) L.Reset(); /lif c is too

small, reset

/land start from the beginning
while (L.Length_of Rem() && (c > L.Peek()))
L.Advance(); //advance to the correct

spot
L.Insert(c); //now that we are at the correct
postition,
/linsert the character
cin >>c; /land take the next character
L.Reset(); /Reset the list so we can output from the
beginning
cout << "The sorted data is as follows:" << end|;
while (L.Length_of_Rem()) /lwhile Rem is not empt
{
cout << L.Peek() <<'"; //output each element of
the list
L.Advance();
}
cout << endl;

M
/lInsert sort for integers//
T

cout << "Enter integers, terminated by 0." <<endl;
List<int> B; //declare a list of integers named

intd;
cin >>d;
B.Insert(d); /[Puts first value in B
cin >>d;
while (d != 0) //Waits for O input to stop
{
if (d < B.Peek()) B.Reset();
while (B.Length_of Rem() && (d > B.Peek()))
B.Advance();
B.Insert(d);
cin >>d;

}
B.Reset();

cout << "The sorted data is as follows:" << end|;
while (B.Length_of Rem())

{

cout << B.Peek() <<%
B.Advance();

}

cout << endl;

} llend

SUMMARY

In order to encourage separation of concerns, nméion hiding, and the
ability to reason about programs at the appropi@tel, a generic, all purpose list
component has been introduced. Several othertgtas; such as stacks, queues, and
ordered lists have been built using the basicctishponent. In the broader sense, the
idea of carefully planning reusable componentsiisoduced and promoted. Using
this approach teaches students to do careful plgnso that they are not constantly
reinventing the same ideas over and over, but rathey are thinking about
constructing whatever they need in terms of re@sabimponents that have already
been shown correct.

One of the best results of using this approachas students who write some
basic components in early courses find it bendfitmause them in later courses,
allowing them to concentrate on whatever new cotscéey are learning in those
courses, rather than needing to go back and retimyeas they have already mastered.

In case there is concern that students shouldib®reing old ideas, there are
two ways to look at that. First, if one has thalgaf reinforcing, it is quite reasonable
to disallow the use of formerly written componentsowever, if students are writing
new components for any ideas (old or new), it il istportant that they do so with
the idea of promoting correctness and reuse.

The second significant result of using such an @ggr is that students really
do master the ideas, probably more deeply than etlier approaches, because they
have to give so much thought to how they can sethap object classes to achieve
desired information hiding and reuse potential.

Employers of students who have been educated tlsmgpproach have given
(in many cases unsolicited) feedback, indicatingirtigreat appreciation of those
students and their contributions to whatever compheay are working for.

REFERENCES

Cormen, T., Leiserson, C., Rivest, R., Stein,Ir@roduction to Algorithms, MIT
Press, Cmbridge, Massachusetts, 2001.

Pressman, RogeBoftware Engineering: A Practitioner's Approach, McGraw-Hill,
2005.

Sahni, Sartaj, Data Structur@dgorithms, and Applications in C++, McGraw-Hill,
1998.

Sommerville, lanSoftware Engineering Addison-Wesley, 2004.

Stubbs, D., Webre, NData Structures with Abstract Data Types Brooks/Cole,
Pacific Grove, California.

Weiss, Mark,Data Structures & Problem Solving using Java Addison Wesley,
New York, NY, 2002.

