
1

OO Big O

Joan Krone
Denison University

Department of Math and CS
Granville, Ohio 43023

740-587-6484
krone@denison.edu

W . F. Ogden
The Ohio State University

Neal Avenue
Columbus, Ohio 43210

614-292-6007
ogden@cis.ohio-state.edu

ABSTRACT
When traditional Big O analysis is rigorously applied to
object oriented software, several deficiencies quickly
manifest themselves. Because the traditional definition of
Big O is expressed in terms of natural numbers, rich
mathematical models of objects must be projected down to
the natural numbers, which entails a significant loss of
precision beyond that intrinsic to order of magnitude
estimation. Moreover, given that larger objects are
composed of smaller objects, the lack of a general method of
formulating an appropriate natural number projection for a
larger object from the projections for its constituent objects
constitutes a barrier to compositional performance analysis.

Here we recast the definition of Big O in a form that i s
directly applicable to whatever mathematical model may
have been used to describe the functional capabilities of a
class of objects. This generalized definition retains the
useful properties of the natural number based definition but
offers increased precision as well as compositional
properties appropriate for object based components. Because
both share a common mathematical model, functional and
durational specifications can now be included in the code for
object operations and formally verified. With this approach,
Big O specifications for software graduate from the status of
hand waving claim to that of rigorous software
characterization.

Categories and Subject Descriptors
D.2[Software Engineering], F.2[Analysis of Algorithms],
F.3[Logics and Meanings of Programs]: Specifications,
Models, Semantics – performance specifications,
performance analysis, performance proof rules.

General Terms
Algorithms, Performance, Verification.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

Keywords

Performance, Formal Specification, Verification, Big O.

1. INTRODUCTION
The past forty years have seen a great deal of work on the
rigorous specification and verification of programs’
functional correctness properties [2] but relatively little on
their performance characteristics. Currently performance
“specifications” for programs commonly consist of reports
on a few sample timings and a general order of magnitude
claim formulated in a Big O notation borrowed from number
theory. As we have discussed elsewhere [6], such an
approach to the performance of reusable components is no
more adequate than the test and patch approach is to their
functionality.

As with functionality, problems with performance usually
have their roots in the design phase of software development,
and it’s there that order of magnitude considerations are
most appropriately encountered. This means our order of
magnitude notations are generally applied in a somewhat
rough and ready fashion (which is probably why defects in
our current ones have escaped notice for so long). However, if
their formulation doesn’t reflect the ultimate performance of
the components under design accurately and
comprehensibly, then marginal designs become almost
inevitable. So the way to get an appropriate order of
magnitude definition is to formulate one that meshes
smoothly with program verification.

With the advent of object oriented programming and a
component based approach to software, formal specifications
of a component’s functionality are considered to be critical
in order for clients to make good choices when putting
together a piece of software from certified components.

To meet the need for reasoning about performance as well as
functionality, we introduce a new object appropriate
definition of Big O. Object Oriented Big O, or OO Big O for
short, allows one to make sensitive comparisons of running
times defined over complex object domains, thereby
achieving much more realistic bounds than are possible with
traditional big O.

We cast our approach in a framework that includes an
assertive language with syntactic slots for specifying both
functionality and performance, along with automatable proof
rules that deal with both. Equally important is the need for
the reasoning to be fully modular, i.e., once a component has
been certified as correct, it should not be necessary to
reverify it when it is selected for use in a particular system.

2

Our approach is based on the software engineering
philosophy that a component should be designed for reuse
and thus include a general mathematical specification that
admits several possible implementations – each with
different performance characteristics [3, 7]. Of course, in
order for a component to be reusable, it should include
precise descriptions of both its functionality and its
performance, so that prospective clients can be certain they
are choosing a component that fits their needs.

It is also important that all reasoning about constituent
components – including reasoning about performance – be
possible without knowing implementation details. In fact, if
one is using generic components, it should be possible to
reason about those components, even before details such as
entry types to a generic container type, are available.

With these considerations in mind, we make our new
definition for Big O, and then we present an example
illustrating how it can be used to supply a component with a
formal summary of both its functionality and performance.
Proof rules can then be applied to verify these specifications.

2. OO Big O Definition
The traditional Big O is a relation on natural number based
functions defined in the following way:

Given f, g: _Æ_, f(n) is O(g(n)) iff $ constants c and n0 such

that f(n) £ c⋅g(n) whenever n ≥ n0. A program whose running
time is O(g) is said to have growth rate g(n) [1].

When the object classes central to modern programming are
formally modeled, they are viewed as essentially arbitrary
mathematical domains, which generally have little to do with
natural numbers. So the natural expression of the duration
f(x) of an operation on object x is as a function directly from
its input domain to the real numbers. Clearly any gauging
function g that we might want to use as an estimate for f
should have the same domain. Accordingly, the Is_O
relation between functions (f(x) Is_O g(x)) is defined by:

Definition: (f: DomÆ_) Is_O (g: DomÆ_): B = ($ A: _> 0, $

H: _ ' " x: Dom, f(x) £ A⋅g(x) + H).

In other words, for two timing functions f and g mapping a
computational domain Dom to the real numbers, to say that
f(x) Is_O g(x) is to say that there is some positive
acceleration factor A and some handicap H such that for every
domain value x, f(x) £ A ⋅g(x) + H. If we think of f and g as
representing competing processes, f being big O of g means
that g is not essentially faster than f. If f is run on a
processor A times faster than g’s processor and also given a
head start H, then f will beat g on all input data x.

Of course, in order to use this definition, it is necessary to
have mathematical support in the form of theorems about the
revised definition of Is_O. For example, we need an additive
property so we can apply our analysis to a succession of
operation invocations:

Theorem OM1: If f1(x) Is_O g1(x) and f2(x) Is_O g2(x), then

f1(x) + f2(x) Is_O Max(g1(x), g2(x)).

A development of appropriate theorems and definitions
appears in [5]. We turn now to formal specification of
functionality and performance for components.

3. ABSTRACT OBJECTS
If you want to produce rigorously specified and verified
software components that support genericity, facilitate
information hiding, and can be reasoned about in a modular
fashion, it is necessary to adhere carefully to certain
guidelines and principles [7].

As a prelude to presenting an example illustrating our
approach to Big_O, we will briefly discuss a component that
does adhere to these principles. For any component
developed in our system we use a module construct called a
Concept to record formally its functionality specifications. A
concept serves on the one hand as a conceptually simple yet
fully precise description of functionality for a client and at
the same time as a functionally complete yet maximally
flexible requirements document for the implementer. A
concept will typically be generic to facilitate maximum
reuse.

Our example will be the component concept that captures the
“linked list.” Because one of our guidelines is to tailor a
concept to simplify the client’s view, we call this concept a
one-way list template and the objects it provides list
positions. We describe list positions mathematically as pairs
of strings over the entry type. The first string in a list
position contains the list entries preceding the current
position and is named P r e c ; the second string is the
remainder of the list, Rem. Since the operations on list
position (Insert, Advance, Reset, Remove, etc.) all have easy
specifications in terms of this model, and since the
underlying linking pointers are cleanly hidden, reasoning
about client code is much simplified.

 Although variations in list implementation details are
usually insignificant, our system allows for the possibility
of a multiplicity of different realizations (implementations)
for any given concept. Each Realization, with its own
potentially distinct performance characteristics, retains a
generic character, since parameter values such as the entry
type for lists have yet to be specified. The binding of such
parameters only takes place when a client makes a Facility,
which involves selecting the concept and one of its
realizations along with identifying the appropriate
parameters.

When designing concepts for maximal reusability, our
guidelines prescribe that only the basic operations on a class
of objects should be included, so for lists we only include
Insert, Advance, etc., but not Search, Sort, etc. In order to
have a rich enough Big O example, we will consider such a
sorting operation, so we need to examine the Enhancement
construct used to enrich basic concepts such as the one-way
list.

Well-designed enhancements also retain to the extent
possible the generality we seek in our concepts, but often
they do add constraints that prevent their use in certain
situations. Providing a Sort_List operation, for example,
requires that list entries possess an ordering relation _, so
certain classes of entries would be precluded from lists if
Sort_List were one an operation in the basic list concept.

EXAMPLE APPLICATION OF BIG O
To clarify the setting in which Big O performance
specifications must work, we begin our example by

3

examining the sorting enhancement that lays out the
functional specifications any implementation must satisfy.

This enhancement’s name is Sor t_Capabi l i ty , and it
maintains the generic character of the concept (which allows
entries to be of arbitrary type) by importing an ordering
relation _ on whatever the entry type may be. A requires
clause insists that any imported _ relation actually be a total
preordering on whatever the entry type is.

The uses clause indicates that this component relies on a
mathematical theory of order relations for the definitions and
properties of notions such as total preordering. Note that an
automated verifier would need such information.

The mathematical definition In_Ascending_Order i s
introduced to make later assertions easier to express. In this
case, the ensures (post condition) clause for the operation
Sort_List, is stated in terms of this definition and indicates
that the Prec string of the list must be ordered according to
the _ relation passed in.

In the Sor t_Lis t operation, u p d denotes the updates
parameter mode, indicating that this operation may change
the List_Position parameter P.

The second part of the ensures clause guarantees that the
entries in the list after the operation Sort_List has taken
place are exactly the same entries as those before the
operation took place; the @ symbol indicating the value of P
at the beginning of the operation.

Enhancement Sort_Capability(def const (x: Entry) _

(y: Entry): B);

 for One_Way_List_Template;

 uses Basic_Ordering_theory;

 requires Is_Total_Preordering(_);

Def const In_Ascending_Order(a: Str(Entry)): B =

 (" x, y: Entry, if ·xÒ_·yÒ Is_Substring a, then x _ y);

Oper Sort_List(upd P: List_Position);

 ensures P.Prec = L and

 In_Ascending_Order(P.Rem) and

 P.Rem Is_Permutation @P.Prec_@P.Rem;

end Sort_Capability;

A client who wishes to order a list would be able to choose
this list enhancement on the basis of these functional
specifications. However, before choosing among the
numerous realizations for it, a client should be able to see
information about their performance. Rather than giving
such timing (duration) information a separate ad hoc
treatment, we introduce syntax for formally specifying
duration as part of each realization. In short, we associate
with every component not only a formal specification of its
functionality but of its performance as well, so that a
potential client can choose a component based on its formal
specifications rather than on its detailed code.

To see how the new Big O definition can improve
performance specifications, we will look at an insertion sort
realization for the Sort_List operation. Since our focus here
is on formal specifications of timing for object-oriented

components, we go directly to the parts of the realization that
are most immediately relevant to such specifications.

Because a realization for a concept enhancement relies upon
the basic operations provided by the concept, its
performance is clearly dependent on their performance, and
that can vary with the realization chosen for the concept.
Fortunately performance variations for a given concept’s
realizations seem to cluster into parameterizable categories,
which we can capture in the Duration Situation syntactic
slot. The normal situation for a one-way list realization, for
example, is that all the operations have O(1) durations. Of
course realizations of lists with much worse performance are
possible, but we wouldn’t ordinarily bother to set up a
separate duration situation to support analyzing their impact
on our sort realization.

Duration situations talk about the durations of supporting
operations such as the Insert and Advance operations by
using the notation DurInsert(E, P), DurAdvance(P), etc. So we can
use our Big O notation to indicate that the performance
estimates labeled “normal” only hold when DurInsert(E, P)
Is_O 1, etc.

The realization is next, followed by additional explanation.
We suggest reading the Duration Situation, then skipping to
the procedure and returning to the definitions and theorems
section as you read the subsequent explanation.

Realization Insertion_Sort_Realiz(

Oper Lss_or_Comp(rest E1, E2: Entry): Boolean;
 ensures Lss_or_Comp = (E1 _ E2);)

 for Sorting_Capability;

 Duration Situation Normal: DurReset(P) Is_O 1 and

 DurLength_of_Rem(P) Is_O 1 and

 Dur=(i, j) Is_O 1 and DurRemove(E, P) Is_O 1 and

 DurAdvance(P) Is_O 1 and

DurInsert(E, P) Is_O 1 and Entry.Init_Dur Is_O 1
and

List_Position.Init_Dur Is_O 1 and

DurLss_or_Comp(E1, E2) Is_O 1;

 Def. const (E1: Entry) _ (E2: Entry): B = (E1 _ E2 and

¬ E2 _ E1);

 Inductive def. on a: Str(Entry) of

const Rank(E: Entry, a): _ is

 (i) Rank(E, L) = 0;

 (ii) Rank(E, ext(a, D)) =
Ó
Ì
Ï +

otherwiseá)Rank(E,

EDif1á)Rank(E, p
;

Theorem IS1: " E: Entry, " a, b: Str(Entry), Rank(E, a_b) =

Rank(E, a) + Rank(E, b);

Theorem IS2: " E: Entry, " a: Str(Entry), Rank(E, a) =

4

˜̃
¯

ˆ
ÁÁ
Ë

Ê
Â

' ECEntry:C

)áC,Occurs_Ct(
p

;

Theorem IS3: " E: Entry, " a, b: Str(Entry),

 if a Is_Permutation b, then Rank(E, a) = Rank(E, b);

Theorem IS4: " E: Entry, " a: Str(Entry), Rank(E, a) £ |a|;

 Inductive def. on a: Str(Entry) of const P_Rank(a): _ is

 (i) P_Rank(L) = 0;

 (ii) P_Rank(ext(a, E)) = P_Rank(a) + Rank(E, a);

 Theorem IS5: " b: Str(Entry), P_Rank(b) =

˜
˜
˜

¯

ˆ

Á
Á
Á

Ë

Ê

Â
Ò·

'
âIs_PrefixEá

Str(Entry):áEntry,E:

)áE,Rank(

o

;

 Theorem IS6: " b: Str(Entry), P_Rank(b) £ |b|⋅(|b| - 1)/2 ;

 Def. const Len(P: List_Position): _ = (|P.Prec _ P.Rem|);

 Proc Sort_List(upd P: List_Position);

 Duration Normal:

 Is_O Max(Len(@P), P_Rank(@P.Prec _ @P.Rem));
 Var P_Entry, S_Entry: Entry;

 Var Sorted: List_Position;

 Aux Var Processed_P: List_Position;

 Reset(P);

 While Length_of_Rem(P) ≠ 0

affecting P, P_Entry, Sorted, S_Entry, Processed_P;
maintaining Sorted.Prec = L and

 In_Ascending_Order(Sorted.Rem) and
 Processed_P.Prec _ P.Rem = @P.Prec _ @P.Rem
and

 Sorted.Rem Is_Permutation Processed_P.Prec;
decreasing |P.Rem|
elapsed_time Normal:

Is_O P_Rank(Processed_P.Prec) + |Processed_P.Prec|;

 do

Remove(P_Entry, P);

Remember

 Iterate

 affecting Sorted, S_Entry;
 maintaining

 Sorted.Prec _ Sorted.Rem = @Sorted.Rem and

 " E: Entry, if ·EÒ Is_Substring Sorted.Prec

 then E _ P_Entry;
 decreasing |Sorted.Rem|;

 elapsed_time Normal: Is_O |Sorted.Prec|;
when Length_of_Rem(Sorted) = 0

do exit;
 Remove(S_Entry, Sorted);
when Lss_or_Comp(P_Entry, S_Entry)

do Insert(S_Entry, Sorted) exit;
 Insert(S_Entry, Sorted);

 Advance(Sorted);

 repeat;

 forget;

 Aux Comp Insert(Replica(P_Entry), Processed_P);

Advance(Processed_P) end;

 Insert(P_Entry, Sorted);

 Reset(Sorted);

 end;
 P :=: Sorted;

 end Sort_List;

end Insertion_Sort_Realiz;

For the Sort_List procedure, the strategy of the outer loop i s
to place successive values P_Entry from the list P into their
proper place in the list Sorted. Ultimately, the two lists, P
and Sorted will be swapped so the original list P is replaced
by the same elements rearranged to be in the specified order.
The task of the inner loop is to position the Sorted list
appropriately for the insertion of P_Entry.

For each loop, we record the loop invariant in the
maintaining clause. To express its invariant, it helps to be
able to refer to the value of the list Sorted at the beginning of
the inner loop. For this purpose, we employ the Remember-
forget construct. The effect of Remember is to record the
current value of Sorted in adjunct variable @Sorted, P in @P,
etc. To preserve the values of @ P , etc. previously
remembered, these values go into the adjunct variables @@P,
@@Sorted, etc., where we can reference them as needed. The
effect of forget is roughly the opposite of Remember.

Since the inner loop just changes the values of a couple of
the variables, we can simplify the maintaining clause by
listing those affected variables in the updating only list.
The decreasing clause provides a place for a progress metric,
necessary for proving termination and thereby establishing
total correctness.

To specify the performance of the procedure we need to
supply a duration clause, a formula that is synthesized from
the durations of the constituent parts of the procedure, in
this case, a nested loop. Accordingly, we examine first the
inner loop and then the outer loop to get a duration estimate
for each. Then we put those estimates together to get the
duration clause to associate with the procedure.

For the inner loop, we have filled in the elapsed time
expression using our new OO Big O with the expression
Is_O |Sorted.Prec|, indicating that whenever we are at the
beginning of the loop, the time that has elapsed since we
entered the loop construct can be estimated by the length of
the Prec string of the Sorted list. Remember that our one way
list is modeled as a pair of strings, Prec and Rem. The
correctness of this specification can be verified simply by
first verifying that |Sorted.Prec| = 0.0 when we first arrive at
the inner loop, since Sorted.Prec = L at that point. Then, we
check that the sum of the durations of the operations in the

5

loop body Is_O of the difference between the elapsed time
gauge function at the end of the loop body and its value at
the beginning. Here |Sorted.Prec| increases by one on each
iteration and there are five order of 1 duration operations in
the body, so this boils down to checking that (5)Is_O(1) for
the “normal” situation. Now we turn our attention to the
outer loop, where problems with traditional Big_O manifest
themselves. For the elapsed time expression here, we again
need an estimate of the time at the beginning of each
iteration that’s elapsed since the beginning of the construct.
In each iteration, an entry is removed from the original list,
the inner loop advances to its proper place in the Sorted list.
and then it is inserted at this point in the Sorted list.

Clearly the elapsed is going to depend heavily upon the
order of the elements in the original list @P, but traditional
natural number based Big_O analysis would require that we
project the @P list onto a natural number “n” and express our
gauge function in terms of that n (e.g. n3). Typically that n
would be the length of a list (what we’ve formally defined as
Len(P) so that n = Len(@P)). Since Len(@P) is totally
insensitive to the order of the entries in @P, we could at best
end up with a duration estimate for Sort_List of n2.

To exploit the increased precision of the OO Big O
definition, we need to define a function on strings of entries
a that counts how many entries in a are less than an entry E

and hence would be skipped over when positioning E after a
has been sorted, and that’s why our realization includes the
definition of the Rank(E, a) function and states some of its
properties. Since the elapsed time of the outer loop depends
upon the cumulative effect of positioning successive entries
in @P, we also need to define a “preceding rank” function
P_Rank(a).

When we attempt to use the P_Rank function to specify the
elapsed time of our outer loop, we notice that constructing
the Sorted list has scrambled the data from P that determines
the elapsed time, so we add an auxiliary variable,
Processed_P, which we use to keep track of that otherwise
obliterated ordering data. Auxiliary variables and the
auxiliary code that updates them are just used in reasoning
about programs and are never compiled, so it is syntactically
incorrect for them ever to influence the values ordinary
variables.

Using these definitions, we express our elapsed time bound
for the outer loop as
 Is_O |Processed_P.Prec| + P_Rank(Processed_P.Prec).

When the loop is entered, Processed_P.Prec is empty, so
 |Processed_P.Prec| + P_Rank(Processed_P.Prec) = 0.0.
Understanding the inductive step involves noticing that if E
is the next P_Entry and a is the current Processed_P.Prec,
then after executing the loop body, Processed_P.Prec =
a_·EÒ, so that the difference of the before and after values of

the gauge function is 1 + P_Rank(a_·EÒ) - P_Rank(a) = 1 +

Rank(E, a). The duration of the outer loop body is easily
seen to be Big O of this quantity, since the execution time of
the inner loop Is_O Rank(E, a), and durations of the other
four operations in outer loop body are all Big O of 1.

The overall procedure Sort_List consists of only a few more
Big O of 1 operations and variable declarations, so its normal
duration bound simplifies to

 Max(Len(@P), P_Rank(@P.Prec_@P.Rem).

Now one of the results about P_Rank is that P_Rank(a) £

|a |⋅(|a |-1)/2, so it follows that D u rSort_List(P) Is_O Len(P)2

too, so we can get the much less exacting estimate produced
by traditional Big O analysis if we wish. We’re just not
forced to when we need a sharper estimate. Another point to
note is that besides being compatible with correctness proofs
for components, the direct style of performance specification
is much more natural than the old style using the often ill
defined “n” as an intermediary.

4. THE CALCULUS FOR OO BIG O
Our Sort_List example illustrates how we can use the new Big
O notation in performance specifications and indicates how
such specifications could fit into a formal program
verification system. The success of such a verification
system depends upon having a high level calculus for Big O
that allows verification of performance correctness to
proceed without direct reference to the detailed definition of
Big O.

Of course making such a calculus possible is one of the
primary motivations for the new Big O definition, and in [4]
we have developed a number of results like the earlier
theorem OM1 to support this calculus. Another simple
illustration of a property of the new Big O important for
verification is dimensional insensitivity.

Theorem OM2: If f(x) Is_O g(x) and F(x, y) = f(x) and

G(x, y) = g(x), then F(x, y) Is_O G(x, y).

Taken together, these results must justify both the proof
rules for our program verification system and the expression
simplification rules for the resulting verification conditions.

We should also note that Big O estimates are only the most
obvious of order of magnitude estimates, and that we can
readily extend our object based definitions and theorems to
cover little o, Big W, Big Q, and little q. See [5].

5. CONCLUSION
A critical aspect of reusable components is assured
correctness, an attribute attainable only with formal
specifications and an accompanying proof system. Here, we
claim that while functional correctness is absolutely
necessary for any component that is to be reused, it is not
sufficient. Reusable components need formally specified
performance characteristics as well.

Traditional Big O order of magnitude estimates are
inadequate because they deal only with the domain of natural
numbers and offer no support for modularity and scalability.

Here we introduce a new mechanism for doing order of
magnitude analysis for components, OO Big O. This new
method is applicable to programs written over any domain
and addresses the issues of generic data abstraction and
specification-based modular performance reasoning.

If we want to design software components that can be reused,
we claim that such components must have formal
specifications for both functionality and performance
associated with them and that there must be a proof system
that addresses both. Moreover, to avoid intractable
complexity, it must be possible to reason about these
components in a modular fashion, so that one can put

6

together programs hierarchically, each part of which can be
reasoned about using only the abstract specifications for its
constituent parts. To avoid the rapid compounding of
imprecision that otherwise happens in such systems, it i s
also essential to use high precision performance
specification mechanisms such as OO Big O.

To develop maximally reusable components, it is necessary
to be able to reason about them in a generic form, without
knowing what parametric values may be filled in when the
component is put into use.

OO Big O satisfies all these criteria, supporting complete
genericity, performance analysis of programs over any
domain, and modular reasoning.

6. REFERENCES
1. Aho, A., Hopcroft, J., Ullman, J., Data Structures and

Algorithms, Addison-Wesley, 1983.

2. de Roever, W., Engelhardt, K. Data Refinement:

Model-Oriented Proof Methods and their

Comparison, Cambridge University Press, 1998.

3. Krone, “The Role of Verification in Software

Reusability.” Dissertation, The Ohio State

University, 1988.

4. J. Krone, W. F. Ogden, and, M. Sitaraman, Modular

Verification of Performance Constraints, Technical

Report RSRG-03-04, Department of Computer

Science, Clemson University, Clemson, SC 29634-

0974, May 2003, 25 pages.

5. Ogden, W. F., CIS680 Coursenotes, Spring 2002.

6. Sitaraman, M., Krone, J., Kulczycki, G., Ogden, W.,

and Reddy, A. L. N., “Performance Specification of

Software Components,” ACM SIGSOFT Symposium

on Software Reuse, May 2001.

7. Weide, B., Ogden, W., Zweben, S., “Reusable

Software Components,” in M.C. Yovits, editor,

Advances in Computers, Vol 33, Academic Press,

1991, pp. 1 – 65.

