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Abstract

Modular analysis of performance for component-based systems is the focus of this paper.  The

paper introduces performance contracts that specify time and space.   The contracts are expressed

in a modular fashion using a suitable coordinate system that admits the consequences of software

engineering tenets such as abstraction and parameterization.  The paper presents a modular

verification system that is based on both contracts of functional behavior and performance.  The

system is designed to handle the necessary complexity in using non-trivial, generic objects,

where performance estimates cannot be metricized (i.e., presented in terms of sizes of objects),

and instead need to rely on values from an analysis of functional correctness.  To enable
automation, the system checks and employs programmer-supplied functional and performance

invariants for loops.
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1.  INTRODUCTION

Predictability is a fundamental goal of all engineering, including software engineering.  To show

that a program predictably provides specified functional behavior, a variety of ways to apply a

system of proof rules to a program for proving functional correctness have been studied since

Hoare’s work. A number of recent efforts have addressed the challenge of modular reasoning of

functional behavior for object oriented, component based software [[CCW00], [EHO94],

[Hey95], [Lea91], [Lei95], [MuP00], and [SAK00]].

While correct functional behavior is critical to any software system, ultimately, a trustworthy

system must be predictable in terms of its performance as well [[CCW00], [IEE92], [Jon99], and

[Smi90]]. The importance of predictable performance in the context of parameterized

components and component-based systems is receiving increasing attention in the software

engineering literature [[JM00], [Mey03], [Sch01], [Smi90], and [WMW03]]. Time and space

aspects of performance are the focus of this paper.  A program that carries out the right job but

takes longer than available time is of limited value, especially in modern embedded systems.

Similarly, a program that is functionally correct, but that requires more space than the system can

provide is not useful either.    Measurement during execution (e.g., using run-time monitoring) is

a common approach for analyzing performance of large-scale systems. The objective of this

paper is static analysis (and hence, a priori prediction).  In particular, the focus is on modular or

compositional performance reasoning [SKK01]:  To reason about the (performance) behavior of

a system using the behavioral (and performance) specifications of the components of the system,

without a need to examine or re-analyze the implementations of reused components.  Solving the

compositional performance reasoning problem is important for the following reasons:

• Realistic software systems will be inevitably composed from components, and therefore, it is

essential to be able to reason about the behavior of component-based systems;

• Software systems fail routinely for performance reasons, and therefore, it is essential to

design systems with predictable performance; and

• The reasoning approach should be compositional to scale up.
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The rest of this section examines related work in performance analysis and highlights the

contributions of the present paper.

1.1 Related Work

Much of the previous work on static performance analysis has concentrated on timing constraints

in a real-time context.  Of these, the work of Hayes and Utting in [HaU01] is most closely related

to the present paper.  Using a sequential context, they have presented a comprehensive

refinement calculus for time analysis.  This work is based on the foundations for real-time

specification and refinement by Mahony in [Mah92] and by Utting and Fidge in [UtF96].

Among the key contributions of this work is in explaining that accurate timing analysis will

necessarily rely on assertions from functional correctness.  For this reason, they base their timing

calculus on the calculus for functional behavior given in [Mor94].  The overall objective here is

to refine specifications into a machine-dependent real-time programming language. To

accomplish this goal they use the deadline directive.    The time expressions given in this paper

take the role of deadlines in their work.  A significant secondary contribution of this work is

noting that loops need to annotated with deadline directives that are proved and used similar in

spirit to loop invariants for functional behavior; the deadline estimates for loops in [GHF98]

correspond to the elapsed time estimates for loops given in this paper.  The deadline directives

place demands on the compiler as well.  Others have discussed techniques for getting more exact

time bounds by including processor timing issues [[[LBJ95], LiG98]]. These ideas are

complementary to the framework discussed in this paper because we make it possible to

parameterize time expressions to account for the performance of support systems such as

compilers and machines.

A precursor to the work of Hayes and Utting is Hooman’s work on real-time analysis [Hoo91].

Hooman’s emphasis is on real-time compositionality in a concurrency setting.  Hooman does not

introduce deadlines nor does he allow for variability in timing of operations such as object

assignments.  His loop specification does not include the equivalent of an elapsed time assertion

either.  Distributed system timing analysis is the focus of the work by Lynch and Vaandrager in
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[LyV95].  Earlier, Alan Shaw introduced a formal system for time verification for constructs in

higher-level languages in [Sha89].  This work did not address modularity issues.

Our work differs from the previous work in timing analysis in its emphasis on data abstraction

and modular verification involving non-trivial, generic objects.  The complexity of our

specification and verification system stems from the need to handle generalized performance

expressions for operations that are parameterized by both input and output values of arbitrary

objects (among other factors, such as situations and support systems).  This generalization is

essential to establish tight bounds, instead of settling for maximums among alternatives.

Furthermore, by providing proof rules for performance analysis that show the direct dependence

of performance estimates on abstract object values and assertions from functionality

specification and verification, our proof system makes the necessary connections explicit.

While there has been significant research in time analysis, space analysis has received relatively

modest attention.  Real-time and embedded systems need to be concerned with space utilization

both because critical systems should not run out of storage and because space constraints often

dictate timing constraints.  Schmidt and Zimmerman have discussed an additive calculus for both

time and space in [ScZ94] and [Sch01].  They propose an operational approach that allows

accounting for lower-level machine details.  This work is among the first to generalize

performance analysis for non-trivial objects, though parameterization and value-based analysis

complexities are not considered.  Compositionality was not among the initial objectives either.

Hehner has presented an approach for both specification and verification of space constraints

[Heh99].  He describes a formal proof system for time and (maximum and average) space

analysis.  Hehner captures the distinctions necessary to handle time and space, because space

utilization increases and decreases, unlike time. A key result of Hehner’s work is in illustrating

using a simple, yet complete example that the process can be automated.  Our proof system is

intended for automation as well. Both systems can handle dynamic memory management.  In

verification of recursive procedures and loops, we expect time and space clauses to be supplied

by a programmer for automation, though the need for the clauses is neither shown nor obvious in

the (simpler) recursive procedures given in Hehner’s paper.   Our calculus is more involved
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because we address data abstraction and modular reasoning about space usage, even before the

implementations are available, using situational assumptions.  The parametric nature of space for

non-trivial objects and their operations (as in the case of time analysis) is the other necessary

complicating factor in our work.  An early precursor to this work is Mary Shaw’s paper on

performance specification and verification (assuming simplified expressions) [Sha79], where she

has introduced (ghost) variables for performance analysis.

We have discussed a system for order-of-magnitude descriptions of space and time behavior

[SiW94] and more detailed specifications [Red99] elsewhere.  Our goal in this paper is to build

upon related work and illustrate how to prove performance correctness for component-based

systems in a modular fashion.

1.2 Contributions

The paper makes two key contributions.  The first of these concerns specification of performance

contracts.  The contracts include expressions for time and space. A key sub-contribution is

identification of a suitable set of coordinates necessary to express the contracts in a modular
fashion and thus be applicable for a component-based setting.  The second contribution is a

modular system for performance verification using both the contracts of functional behavior and

performance contracts.  The paper includes proof rules for procedure calls and loop constructs.
A key sub-contribution here is in handling the necessary dependency of performance contracts of

functional behavioral specifications.  This dependency arises in handling non-trivial objects,
where performance estimates cannot be metricized (i.e., presented in terms of sizes of objects),

and instead need to rely on values from an analysis of functional correctness.  Section 2

discusses specification of performance contracts.  Section 3 discusses modular verification.
Section 4 contains a summary.

2.   SPECIFICATION OF PERFORMANCE CONTRACTS

While the focus of this paper is on performance reasoning, it is essential to understand the

complexities in performance specification to motivate aspects of the reasoning process.  Ideally
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the performance specification for an implementation will be expressed in conceptual terms that

are understandable to users without a complete knowledge of its internal details.  This section

provides a summary of factors that complicate modular performance analysis using simple

examples.

2.1 An Example

The specification of a generic Queue data abstraction is given in the Appendix.  In the

specification, a Queue is modeled as a mathematical string of entries of some arbitrary type.  To

manipulate objects of type Queue, the data abstraction provides primary operations Dequeue,

Enqueue, and Length, among others.

The specification of a secondary operation4 to copy (and append) one Queue to another is given

in Figure 1.  The operation updates the Queue P as specified in the ensures clause.  In the

ensures clause, #P stands for the incoming values of Queue P and “°” denotes string

concatenation.  The operation restores the second queue Q, and this means that the conjunction

Q = #Q is implicit in the ensures clause.  (Specifications may also have requires clauses or

preconditions, though the current specification does not include one.)

Operation Copy_Q_to(updates P: Queue; restores Q: Queue);

ensures P = #P ° Q;

Figure 1:  Functionality Specifications of a Queue Operation5

                                                  
4 Without the loss of generality, we have used the RESOLVE [SiW94] specification and implementation notation to
illustrate the issues throughout this paper.  The same performance questions raised here need to be addressed in
generic component development in any language, such as C++ or Java, with or without formal specifications.
Similarly, the exact formal notation does not affect the issues either.
5 The context for the specification, such as the mathematical modeling of Queues, is implicit in this figure.  The
context is given explicitly in Figure 10 in section 3.
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2.2 A Simple Performance Contract

An Implementation

To discuss performance specification issues, it is necessary to consider details of a procedure to

implement the Copy_Q_to operation.  Making a copy of Q involves making a copy of each of its

entries.  Accordingly, we will import a procedure Copy_E_to.  The procedure for Copy_Q_to is

then straightforward.   Following the while statement, we have used a constant-time swap

statement to transfer the value from the local queue R to the parameter Q.

Procedure Copy_Q_to(updates P: Queue; restores Q: Queue);

Var R: Queue;

Var E, E_Copy: Entry;

While Length(Q) ≠ 0 do

Dequeue( E, Q );

Copy_E_to(  E_Copy, E );

Enqueue ( E, P );

Enqueue( E_Copy, R );

end;

Q :=: R;

      end Copy_Q_to;

Figure 2: An Implementation to Copy a Queue6

Assumptions and Guarantees

In general, we can assume that a procedure that implements an operation P( updates x: T )

running on a specific input x (i.e., x: T Õ Dom) should complete its computation within a time

                                                  
6 The context for the implementation, such as the specification of the operations Copy_Q_to and Copy_E_to, is
implicit in this figure.  The context is given explicitly in Figure 11 in section 3.
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DurP(x).  This duration DurP(x) is clearly going to be a function of x in most cases, so formally

we define:

DurP: DomÆ_, where Dom is the mathematical domain associated with the type T.

For example, the Copy_Q_to  procedure takes two queues as parameters, and hence the input

domain is Queue ¥  Queue, the mathematical domain meaning of which is Str(Entry) ¥

Str(Entry), since queues are modeled abstractly as mathematical strings in the specification of

Queue_Template given in the Appendix.7

Now we can add syntax for duration specifications and in a typical situation we would expect

Copy_Q_to heading to read like:

Procedure Copy_Q_to( updates P: Queue; restores Q: Queue);

duration C1_ |#Q| + C2;

Here C2 accounts for the general setup activities and C1 accounts for the cost for copying each

entry from Q to P.  Unfortunately, this formula is too simplistic because the expression is based

upon a hidden assumption that all the operations on queues have constant duration estimates that

are independent of their arguments.  Hidden assumptions are dangerous because there could be

grossly inefficient implementations of queues in which the duration of say Dequeue(E,Q) is

proportional to the length of Q.  So a duration estimate for Copy_Q_to or any other procedure

must be attached to a particular situation specification making assumptions explicit or must be

parameterized appropriately to be quite general.

The performance specification problem takes on a considerable dimension of complexity when

reusing a parameterized data abstraction whose implementation has not been selected yet

[[SKK01], [SiW94]].  This is because the performance of the new component needs to be

parameterized to allow any implementation of the reused data abstraction to be chosen.

                                                  
7 In this paper, we assume that the durations depend on only the input domain.  This assumption is implicit in the
specification of the normal duration situation.  This assumption is not valid, in general.  Procedures for operations
with relational specifications might take different durations depending on which of the several outputs are produced.
The duration function domains then would be a cross product of input and output domains.
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Given the potential complexity of parameterized performance expressions, a performance

contract defines one or more hypothetical situations, and then expresses performance

specifications only for those situations.  Each situation is a formal statement of performance

requirements of other participating components.  If the hypothesized situation is valid in a client

application, then it is appropriate to reason about that application using the simplified

performance expressions..  When a postulated situation does not hold in a context, then its

performance guarantees do not apply.

Duration Specification for a Simple Situation

To achieve both modularity of performance description and simplicity of expression, we need to

anticipate the forms of supporting performance specifications.   Here, we define a simple

situation formally.

Duration Situation Simple:

$ CD, CE, CL, CCE, CEI, C:=:, C=, C+: R>0 ' CD = LUB( DurDequeue[Entry¥Queue] ) and

CE = LUB(DurEnqueue[ _ and CCE = LUB( DurCopy_Entry[Entry¥Entry] ) and …

The duration for Copy_Q_to (in addition to its parameters) depends on the durations of the

operations it calls, such as basic Queue operations, operations on type Entry, and Integer

operations.  In the simple situation, we assume all these calls take a constant time.  Stated

formally, we have fixed durations CEI and CCE, respectively, to bound the durations to initialize

and copy an entry.  CE, CD, and CL are used to bound the durations of Queue operations

Dequeue, Enqueue, and Length. C:=: denotes the time for the swap statement  and  C= is the

bound for the duration of Integer comparison operation.  The values of these constants will

depend upon the details of the supporting hardware and software.

To simplify our duration expression for the iterative Copy_Q_to procedure, it is convenient to

define two other constants.   The first of these denotes the duration of each iteration.  The

second constant denotes the duration for actions outside the iteration:
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Definition C1 = CD + 2 ⋅ CE  + CL  + CCE + C=;

Definition C2 = 2 ⋅ CEI + C= + C:=: + DurCall(2);

Given these definitions, the specification of Copy_Q_to procedure is given in Figure 3 for the

simple situation.  The duration expression specifies an upper bound on execution time.

Naturally the expression depends on the parameters to the procedure and the durations of other

procedures that are called.  In the expression, notice that we have used Q (the result value of

parameter Q) instead of #Q (the input value), because Q is restored by the operation.

Procedure Copy_Q_to(updates P: Queue; restores Q: Queue);

duration Simple: C1⋅|#Q| + C2;

Figure 3: Duration Specification for a Simple Situation

2.3 “Value-Based” Performance Specifications

While the performance expression in the first example is based on the sizes of queues (i.e.,

“metricized”) as in classical algorithms analysis, this is not adequate in general.  The second

example clarifies that the space-time behavior of a component will need to be expressed in terms

of the values of objects involved, not merely their sizes.   For complex generic objects, such as

queues containing arbitrary entries, if the performance estimates do not account for the arbitrary

nature of the entry type, then the estimates are of little value.

To provide estimates for copying a queue containing a complex type such as trees, we need to

account for the particular trees in the queue, not merely the number of trees.  This is because a

few large trees may take much longer to copy or destroy, and may occupy much more storage

capacity than a queue containing several empty trees.  More importantly, for generic

components, we need to provide performance expressions independent of (and even before we

know) the type of parametric objects.  To account for the variability in duration to copy entries,

we define a “normal” situation.
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Duration Specification for a “Normal” Situation

In the normal situation, we do not make the assumption that it takes a constant time to copy

entries, though we assume Queue operations such as Dequeue, Enqueue, and Length still take a

constant time.

Duration Situation Normal:  $ CD, CE, CL, CEI, C:=, C=, C+: R>0 '

CD =LUB( DurDequeue[Entry¥Queue] ) and CE = LUB(DurEnqueue[ _

In the duration specification in Figure 4, we have used a mathematical definition Copying_Dur

for the duration to copy all entries in a string.  This definition is based on the time to copy an

entry which is dependent on the specific entry value.  In the definition Occurs_Ct denotes the

number of occurrences of a particular entry in a given string.  The constants C3 and C4 are

defined in terms of the duration bounds given for the Normal situation.

Def Copying_Dur( S: Str(Entry) ): _>0  = ( Â ⋅
Entry:E

)(ECopy_EntryS)E,Occurs_Ct( Dur  );

Procedure Copy_Q_to(updates P: Queue; restores Q: Queue);

duration Normal: Copying_Dur(#Q) + C3⋅|#Q | + C4;

Figure 4:  A More Appropriate Duration Specification

It is important to note that there is nothing special about the particular example in this paper that

requires specifications in terms of values.  In fact, in most non-trivial examples of searching and

sorting, an exact time (and space) analysis depends on the exact values of objects.  For example,

in a “simple” situation, an insertion sort procedure is specified to have a quadratic bound in

terms of the size of the container.  In actuality, insertion sort may take only a linear time for

certain input arrangements, far less than the quadratic upper bounds.  A more “normal” situation,

for this example, will capture the dependency on the exact value of the container structure that is

being sorted.  (The case for searching is similar.)  An additional dimension of complexity may be

introduced if the time to compare different elements is not a constant, but depends on the values
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of the elements that are compared.  This may be the case if non-trivial strings are compared.  Our

framework allows the definition of a “more complicated” situation where this level of generality

is needed.

It is clear that a trade-off is to be made between generality and complexity of performance

expressions.   There is no a priori way to predict which one is better for component-based

systems.  Therefore, the performance specification language must be sufficiently expressive to

specify performance for various situations and generality.

2.4 Specification of Storage Space Usage

The second part of the performance specification contract for a procedure gives a storage bound.

Just as we defined situations for duration, we need to do so for storage, which we call

displacement.  Note that displacement introduces some considerations not present when

describing durations.  It is not just the calling of procedures that requires space, but each object

itself takes up some space that must be accounted for in the specifications.  We use keyword

Disp to represent the displacement for a particular object.  It is not necessary to distinguish

whether the allocations are on run-time stacks or heaps, unless there are individual limits on their

sizes.

Of course, there is some base line of displacement taken by the system itself that remains

constant throughout the execution of a particular program.  What our specifications indicate is

the amount of space required above that baseline.  As a program executes, displacement above

the baseline fluctuates as storage is taken up when variables are declared and returned when

blocks are exited.  In order to make it possible to keep our reasoning local, we define for each

procedure the amount of storage required for it to be able to execute; this includes the storage for

all variables a procedure depends on such as its parameters and global variables, as well as local

variables.  We term the amount of displacement that may be manipulated to carry out the

procedure as manip_disp (or Mnp_Disp) for manipulation displacement,.
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In a situation we call normal, we assume that the displacement for a particular object depends on

its component parts.  When procedures are known to take only a small fixed space independent

of the values of their parameters, we say that the amount of space is nominal and use

Is_Nominal to indicate this.  For the current example, we need to account for the fact that each

queue takes space according to the number and type of its entries.  Since we are dealing with a

generic queue, we cannot know what the entry type is in advance, and we need to express this

dependence using our Disp function in terms of the generic type. In writing the displacement

specifications for the Queue procedure, it is useful to define a mathematical definition that

allows us to talk about the number of times a particular entry, E, appears in a string of entries

(which is the abstract mathematical model of a queue).

Def Cnts_Disp( S: Str(Entry) ): _ = ( Â ⋅
Entry:E

)E(S)E,Occurs_Ct( Disp  );

Using this definition and the keywords defined previously, we provide a normal displacement

situation for our queue example:

Displacement Situation Normal: $ DFQD, DFQED, DEID: _ ' " Q: Queue,

Disp(Q) = DFQD + DFQED ⋅ |Q| + Cnts_Disp( Q ) and

DEID = DispEntry.Init_Val and " E: Entry, Disp(E) ≥ DEID and

Is_Nominal(Mnp_DispDequeue(E, Q)) and Is_Nominal(Mnp_DispEnqueue(E, Q)) and

Is_Nominal(Mnp_DispIs_Length(Q));

In our normal situation, we assume that the Disp specification for a (generic) Queue object is of

a general form that is based on three pieces: DFQD, a fixed displacement, such as might be

necessary to store the header information for a queue; DFQED ⋅ |Q|, displacement that is necessary

to link queue entries and is dependent only on the length of the queue; and Cnts_Disp( Q ), the

summative displacement for the actual entries in the queue.  We assume that the space required

to create a local variable of type Entry (which may be non-trivial) is denoted by DEID for Entry

initialization displacement.  This is necessary because at least one local variable of type Entry

will need to be declared in the Copy_Q_to procedure.  We also assume that the space necessary

for Entry initialization process is less than the displacement for any entry; without this
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assumption, we will need to account for the complexity that the task of copying entries might

take up more space than the actual space required for the copied entries.  Finally, we assume that

the manipulated displacements of the procedures Dequeue, Enqueue, and Length that are

invoked in Copy_Q_to are nominal, i.e., they take a small fixed space independent of the values

of their parameters.  We expect the underlying system to have a sufficiently large, yet a fixed

space reserved to handle typical procedure invocation overheads.

Figure 5 contains the entire duration and space performance specification in the normal situation

for the Copy_Q_to procedure.

Duration Situation Normal:  $ CD, CE, CL, CCE , CEI, CEI, C:=, C=, C+: R>0 '

CD =LUB( DurDequeue[Entry¥Queue] ) and CE = LUB(DurEnqueue[ _

Def Copying_Dur( S: Str(Entry) ): _>0  = ( Â ⋅
Entry:E

(E)Copy_EntryS)E,Occurs_Ct( Dur );

Def C3 = CD + 2 ⋅ CE  + CL  + C≠;

Def C4 = 2 ⋅ CEI + C= + C:=: + DurCall(2);

Def Cnts_Disp( S: Str(Entry) ): _ = ( Â ⋅
Entry:E

(E)S)E,Occurs_Ct( Disp  );

Displacement Situation Normal: $ DFQD, DFQED, DEID: _ ' " Q: Queue,

Disp(Q) = DFQD + DFQED ⋅ |Q| + Cnts_Disp( Q ) and

DEID = DispEntry.Init_Val and " E: Entry, Disp(E) ≥ DEID and

Is_Nominal(Mnp_DispDequeue(E, Q)) and Is_Nominal(Mnp_DispEnqueue(E, Q))

and Is_Nominal(Mnp_DispIs_Length(Q));

Procedure Copy_Q_to(updates P: Queue; restores Q: Queue);

duration Normal: Copying_Dur(#Q) + C3⋅|#Q | + C4;

manip_disp Normal: Cnts_Disp (#P) + 2 ⋅ Cnts_Disp (#Q)

+ ( |#P| + 2 ⋅ |#Q| )⋅ DFQED + 3 ⋅ DFQD + 2 ⋅ DEID;

Figure 5: A Performance Specification Contract
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The example makes it clear that the capacity requirement of a procedure depends on the capacity

required for its local variables as well as capacity needed for any changes the procedures makes

to its parametric objects.  This is the reason why we have used the term “manipulated

displacement” instead of, for example, “transitional” displacement.  In other words, while some

of the space used by a procedure may be transitional, the rest of it might impact the storage

availability after the return of the procedure.

2.5. Other Complexities in Performance Analysis

This section discusses other issues that complicate performance specification.  Since these issues

are orthogonal to the topic of this paper, we list them here only for reasons of completeness.

In the examples given here, we have been able to express resource usage estimates strictly in

terms of the abstract values of objects, using the abstract models from the functionality

specification.  Notice that in the examples, the estimates are given based on the abstract “string”

values of incoming queues.  However, the level of abstraction that is suitable for describing

functional behavior may not have sufficient structure for expressing performance estimates

precisely.  In general, the abstract models may need to be enriched with implementation-specific

models. For example, representations of objects may involve hidden internal storage structures

for improved execution time efficiency, structures that should not and will not be visible in a

functional specification of the object behavior.  But the expressions for storage usage for objects

and execution time for operations will depend on these internal structures. To facilitate this

possibility, in general, abstract models used in behavioral specifications need non-trivial

extensions, depending on the precision required in performance expressions [WOS03].

A significant dimension of complexity is added to the performance specification problem when

hidden internal structures are shared among a collection of objects [[EHO94], [Red99]]. Such

sharing is routinely used in practical software to amortize execution time and space usage costs

across operations.  In the simpler scenario, sharing is limited to being among homogeneous

objects using a large pre-allocated structure.  In the more general case, global pointers are used to
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enable sharing across heterogeneous objects. In the presence of such sharing, accounting must be

done carefully to avoid potential double-counting problems, as in a case when a single storage

structure (using aliases) is used to represent multiple abstract values.  Precise time and storage

usage expressions in these cases depend on having suitable abstractions for pointer handling as

well as sophisticated global models with sufficiently rich structure for performance analysis.

It is clear that the overall performance of a software system critically depends on support

systems such as memory managers and optimizing compilers.  The functional and performance

behaviors of support systems must be captured because they form the foundations for reasoning

about any other system.  For predictability, it is important to have a memory manager that is
predictable in terms of allocation/deallocation times as well as storage usage.  While these issues
are quite important, an analytical approach to performance analysis is ultimately necessary to

take advantage of expected research advances in predictability of supporting systems.

3.  MODULAR VERIFICATION

Section 2 introduced ideas and terminology necessary for specifying performance constraints for

generic, object oriented software.  It is particularly important to note that our goal is not only to

specify performance constraints, but to provide a proof system that allows us to reason about

these constraints in a modular fashion.  The proof rules in this section are intended to support

automated, modular reasoning for generic components.  We begin with a simple rule that deals

only with functional correctness of procedure calls to get some familiarity with the form of our

rules, and then we progress to more complicated rules that include performance.
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3.1 Verification of Functional Behavior for Procedure Calls

 Suppose that we have an operation with the specification, termed P_Heading, as given below:

Operation P(updates x: T);

requires P_Usg_Exp;

ensures P_Rslt_Exp;

In order to reason about this procedure when it is called, it is necessary that the specifications be

available to the proof system.  To support both modular reasoning and the automated application

of our proof rules, we introduce the idea of a context, a collection of statements needed for

applying our rules to particular program parts.  For a procedure to be called, it is important that

the specifications for that procedure be available in the context, C.  This happens when the

procedure is declared.  Of course, there may be other items in the context, since C contains

specifications for everything in the scope of this procedure.  Figure 6 shows a procedure call

rule concerned only with verification of functional behavior.  The denominator of the rule shows

that the procedure call takes place within a particular context, after some code, and followed by a

clause (the Outcome_Exp may be viewed as a postcondition).

In the numerator in Figure 6, we note that the context includes the P_Heading.  When P is called

with parameter a, the rule checks that the requires clause, P_Usg_Exp with the actual

argument a replacing the formal argument x holds.  The second clause checks to see that if the

called procedure successfully completes, i.e., the ensures clause is met with the appropriate

substitution of variables, then the assertion Outcome_Exp holds, again with the appropriate

substitution of variables.   The second and subsequent conjunctions allow for the fact that the

specification of Operation P may be relational, i.e., alternative outputs may result for the same

input.  Regardless of what value results for arguments after a call to P, the calling code must

satisfy its obligations.  This is the reason for the universal quantification of variable ?a in the

rule.  In the assertions above the line a stands for the value of the argument a before the

procedure call and ?a stands for (one of its) values after the call.  This is why #x, the formal

name for the parameter’s value before the call, is replaced with a, and x, the name for the
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parameter’s name for the value after the call, is replaced with ?a.  The substitutions make it

possible for the rules to talk about two distinct times, one at the point where a call to the

procedure is made and one at the point of completion.  The rules are designed to avoid the need

to introduce more than two points in the time line, simplifying the process and supporting

modular reasoning.

C » {P_Heading} \ Code; Confirm P_Usg_Exp[x_a] Ÿ

" ?a: T, if P_Rslt_Exp[#x_a, x_?a] then Outcome_Exp[a_?a];

——————————————————————————————————

C » {P_Heading} \ Code; P(a); Confirm Outcome_Exp;

Figure 6: A Modular Procedure Call Rule for Verification of Only Functional Behavior

3.2 Verification of Functional Behavior and Timing

We turn now to verification of procedures with timing specifications.  Since we support the

possibility of multiple implementations for single functionally specified operations, we do not

put performance requirements in the operation heading, but rather place them in the procedure

that implements the given operation.  Note that one can verify functional correctness independent

of performance.  However, verification of performance correctness is meaningless without

functional correctness.  Suppose that a procedure (code) to realize the above operation
specification has the form shown below:

Procedure

duration Dur_Sitn: Dur_Exp;

manip_disp Disp_Sitn: M_D_Exp;

P_body;

      end P;

We have put the displacement specifications here, but we will first show a rule for time

verification and then in the next section deal with all three aspects (functionality, duration, and
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displacement) together.  Figure 7 shows a rule for verifying both the functionality and timing

constraints for a procedure call.

To verify timing, we introduce a verifier keyword Cum_Dur that stands for cumulative duration.

Its purpose is similar to a ghost or verification variable in other approaches.  The value of

Cum_Dur is a non-negative Real number.  At the beginning, the cumulative duration is set to

zero.  As the program executes, the duration increases as each statement needs a specified

amount of time to complete.  Suppose that the sequence of statements following the call to P take

time Sqnt_Dur_Exp (for subsequent duration expression).  Our objective is to confirm that

cumulative duration added to this subsequent expression is below the specified duration bound

Dur_Bd_Exp.  To confirm this, we need to take into account the duration expression for the

call to P (denoted by Dur_Exp), and substitute appropriate actual arguments for formals.  The

P_Heading mentioned in the rule now includes both the operation specifications and the

performance specifications from the procedure.

C » {P_Heading} \ Code; Confirm P_Usg_Exp[x_a] Ÿ

" ?a: M_Exp(T),  if P_Rslt_Exp[#x_a, x_?a] then Outcome_Exp[a_?a] Ÿ

(Cum_Dur + Dur_Exp[#x_a, x_?a] + Sqnt_Dur_Exp[a_?a] £ Dur_Bd_Exp[a_?a]);

——————————————————————————————————————————————

C » {P_Heading} \ Code; Assume Dur_Sitn; P(a);

Confirm Outcome_Exp Ÿ (Cum_Dur + Sqnt_Dur_Exp £ Dur_Bd_Exp);

Figure 7: A Modular Procedure Call Rule for Time Verification

The technique used in parameter passing naturally affects the performance behavior of a

procedure call.  In the rule, we have assumed a constant-time parameter passing method, such as

swapping [HaW91].  The complication that arises when an object is repeated as arguments in a

procedure call is the topic of a paper under revision.

3.3. A Modular Procedure Call Rule for Functionality and Performance Verification
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We turn now to the call rule which includes functionality and performance, both duration and

displacement.  The duration (timing) for a program is clearly an accumulative value, i.e., each

new construct simply adds additional duration to what was already present.  On the other hand,

storage space is not a simple additive quantity.  As a program executes, depending on memory

management, the declaration of new variables will cause sudden, possibly sharp, increases in

amount of space needed by the program whereas variables leaving scope will cause a possibly

sharp decrease in space.  To capture this behavior, we introduce two auxiliary variables in

verification of displacement.  Prior_Max_Aug stands for “prior maximum augmentation” of

space.  As the program executes, over each block, a maximum of storage for that block is taken

to be the Prior_Max_Aug.  At any point in the program, there will be a storage amount over the

fixed storage.  The auxiliary variable Cur_Aug represents this additional storage or the current

augmentation of space.  Prior_Max_Aug captures the maximum up to a given state, whereas

Cur_Aug denotes the additional space usage, beyond fixed storage usage, at a particular state.

The picture in Figure 8 serves to motivate space-related assertions in the procedure call rule.
Along the lower part of the picture the “fixed displacement” represents some amount of storage

necessary for the program to run, an amount that does not vary throughout execution.  The space
required for the code itself is included in this fixed storage.  Above the fixed storage the

execution of the code requires a fluctuating amount of space.

Figure 8: An Illustration of Space Calculus
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Note that the same variable appears twice on the picture, once at the place where a call to

procedure P is made and again at the point of completion of P.  Cur_Aug has a value at every

point in the program and is continually updated.  As the execution proceeds, Prior_Max_Aug

keeps track of the maximum storage used during any interval.  In the picture at the point where

the call P(a) is made, Cur_Aug is shown, as is Prior_Max_Aug.  Of course, as the code

execution progresses, the value for Prior_Max_Aug is updated whenever a new peak in storage

use occurs.

Within the procedure body, some local variables may be declared.  This augmented displacement

is denoted in the figure by a spike in the line representing space allocation for the procedure

code.  The specifications of the procedure include M_D_Exp, an expression that limits the

supplementary storage a procedure may use.  The procedure must stay within that limit in to be

considered correct in terms of performance.  As the picture shows, the M_D_Exp is an

expression involving only local variables and parameters.  These are the only variables under the

control of the procedure and they are the only ones the procedure should need to consider for

specification and verification purposes.  Though performance analysis depends on functional

behavioral analysis, it can be kept modularized in the following sense.  If a new component

replaces another component that provides the same observable functional behavior in a larger

system, then it is possible to re-analyze only the performance behavior of the modified system

without re-analyzing its functionality.

At the point P(a) is called, the picture shows Disp(a), to denote that a’s space allotment is part

of the current augmentation displacement.  Upon completion of the procedure call, the new value

of a, shown as ?a may be different and may require a different amount of space from what its

value needed at the time of the call.  Disp(?a) is part of the current augmentation at the point of

completion.  Fut_Max_Sup_Exp describes a bound on the storage used by the remaining

code, i.e., code following the current statement under consideration.  Given below is the

procedure call rule:
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C » {P_Heading} Code; Confirm P_Usg_Exp[x_a] Ÿ

" ?a: M_Exp(T),  if P_Rslt_Exp[#x_a, x_?a] then Outcome_Exp[a_?a] Ÿ

Cum_Dur + Dur_Exp[#x_a, x_?a] + Sqnt_Dur_Exp[a_?a] £ Dur_Bd_Exp[a_?a] Ÿ

Max(  Prior_Max_Aug, Cur_Aug – Disp(a)  +

Max(M_D_Exp[#x_a, x_?a],   Disp(?a) + Fut_Sup_Disp_Exp[a_?a] ))

£ Aug _Bd_Exp[a_?a];

——————————————————————————————————

C » {P_Heading} \Code; Assume Dur_Sitn Ÿ Disp_Sitn; P(a); Confirm Outcome_Exp Ÿ

(Cum_Dur + Sqnt_Dur_Exp £ Dur_Bd_Exp) Ÿ

Max( Prior_Max_Aug, Cur_Aug + Fut_Sup_Disp_Exp)  £ Aug_Bd_Exp;

Figure 9: A Modular Procedure Call Rule for Verification of Functionality and
Performance Correctness

3.4. Modular Procedure Body Verification

In this subsection, we consider modular verification of a generic procedure such as Copy_Q_to,

introduced in Section 2.1.  Figure 10 makes explicit the context for the specification given in

Figure 1.  The specification of Copy_Q needs to be written within the context of

Queue_Template as an additional operation or enhancement, as shown in Figure 10.  An

enhancement automatically carries with it all aspects of the concept which it is enhancing and

then adds some additional operation(s).

Enhancement Copying_Capability for Queue_Template

     Operation Copy_Q_to(updates P: Queue; restores Q: Queue);

ensures P = #P _ Q;

end Copying_Capability;

Figure 10:  An Enhancement Operation for Queue_Template

Unlike the primary operations in the Queue_Template specification given in the Appendix, such

as such as Enqueue, Dequeue, Swap_First_Entry, Length, and Clear, Copy_Q_to is secondary.
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In other words, it can be realized using a combination of primary operations.  In fact, an

enhancement may have many implementations.  Discussion of an iterative implementation in

Figure 2 has been the focus of this paper.  The context for the realization in Figure 2 is given in

Figure 11.  Details of the performance expressions are identical to those given in Figure 5 and

are omitted here for brevity.  The Easy realization of Copying_Capability imports a procedure to

copy the entries in the queue.  This is necessary because the type of the entries may be arbitrary.

The code and the performance estimates are given in terms of arbitrary generic type of entries.

Realization  Easy_Realization(

Operation Copy_E_to(replaces Copy: Entry; restores Orig: Entry );

ensures Copy = Orig;  );

for Queue_Template.Copying_Capability;

      Duration Situation Normal:  …

                Displacement Situation Normal: …

     Procedure Copy_Q_to(updates P: Queue; restores Q: Queue);

duration Normal: Copying_Dur(#Q) + C3⋅|#Q | + C4;

manip_disp Normal: Cnts_Disp (#P) + 2 ⋅ Cnts_Disp (#Q)

+ ( |#P| + 2 ⋅ |#Q| )⋅ DFQED + 3 ⋅ DFQD + 2 ⋅ DEID;

(* procedure body as given in Figure 2 *)

      end Copy_Q_to;

end Easy_Realization;

Figure 11: A Realization for the Copying Capability Enhancement
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Figure 12 contains a proof rule for verifying that a procedure body meets its behavioral and

performance contract.  In the rule Example_Realization_Heading refers to the information

necessary to use Example_Realization (e.g., realization parameters and performance estimates).

 C » {Example_Enhancement} » {Example_Realization_Heading}\

Assume P_Usg_Exp Ÿ Dur_Sitn Ÿ Cum_Dur = 0.0 Ÿ

 Disp_Sitn Ÿ  Prior_Max_Aug = Disp(x) Ÿ Cur_Aug = Disp(x);

  P_Body;

 Confirm P_Rslt_Exp Ÿ  Cum_Dur + 0.0 £ Dur_Exp Ÿ

Max( Prior_Max_Aug, Cur_Aug) £ M_D_Exp;

_________________________________

C \ Enhancement Example_Enhancement for Example_Concept;

Operation P (  x : T );

Requires P_Usg_Exp;

Ensures P_Rslt_Exp;

end Example_Enhancement;

Realization Example_Realiz(Oper O(  ); req O_Req_Exp; ens O_Rslt_Exp; )

for Example_Concept.Example_Enhancement;

…

Duration Situation Dur_Sitn = …;

Displacement Situation Disp_Sitn = …;

Procedure P (  x  );

duration Dur_Sitn: Dur_Exp;

manip_disp Disp_Sitn: M_D_Exp;

P_Body;

end P;

end Example_Realiz;

Figure 12: A Functionality and Performance Contract Verification Rule
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In the rule in Figure 12, within the context C, we assume that the requires clause is true at the

beginning and we need to confirm that the ensures clause is true at the end of the procedure

body.  For time verification, we need to show Cum_Dur accumulates to a value no greater than

the duration bound, assuming the given duration situation.  For local space verification, we set

the Prior_Max_Aug and the Cur_Aug both to be the amount of space required by variables

before the procedure is called, such as parameter x at the beginning.  Disp(x) denotes the

displacement of the procedure’s parametric object, and it depends on the value of x as noted

earlier.    After the body, the rule checks that the max over the stated values is within the

specified bound.

The important aspect of the proof rule is that it is possible to handle the verification of the

procedure in a modular fashion using locally available assertions and the limited context of the

specifications of reused operations.  We have not addressed verification of data abstraction

implementations in this paper.   While the principles are similar, additional factors such as object

displacement expressions (in addition to procedure displacement) need to be verified.
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3.5. Verification of Loops

We conclude the discussion on performance verification with a proof rule for loops.  First we

annotate the loop in the Copy_Q_to procedure from  Figure 11 with assertions necessary for

automated verification.

Realization Easy_Realization for …

…

Procedure Copy_Q_to(updates P: Queue; restores Q: Queue);

duration Normal: …

manip_disp Normal: …

Var R: Queue; Var E, E_Copy: Entry;

While (Length(Q) ≠ 0)

affecting P, Q, R, E, E_Copy;

maintaining (P _ Q = #P _ #Q) Ÿ R _ Q = #Q;

   decreasing |Q|;

   elapsed_time Normal: Copying_Dur(R) + C3*|R | + C4 ;

    max_manip_disp Normal: Cnts_Disp (P _ Q _ R) +

| P _ Q _ R | ⋅ DFQED + 3 ⋅ DFQD + 2 ⋅ DEID;

do

Dequeue( E, Q );

Copy_E_to (E_Copy, E);

Enqueue ( E, P );

Enqueue( E_Copy, R);

end;

Q :=: R;

      end Copy_Q_to;

Figure 13: A Procedure Annotated with Suitable Loop Assertions for Automated
Verification
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In verifying correctness of loops, loop invariants and progress metrics for establishing

termination of loops are necessary.  Since these assertions cannot be generated automatically in

general, a loop programmer must supply these assertions.

• An affecting clause that lists variables that might be modified in the loop, allowing the

verifier to assume that values of other variables in scope are invariant, i.e., not modified;

• A maintaining clause that postulates an invariant for the loop;

• A decreasing clause that serves as a progress metric to be used in showing that the loop

terminates;

• An elapsed time clause (for each situation assumption) in the duration specification to

denote how much time has elapsed since the beginning of the loop; and

• A max_manip_disp clause (for each situation assumption) that denotes the maximum space

manipulated since the beginning of the loop in any iteration.

The proof system first establishes the correctness of the given assertions, and then employs them

in proofs.  We give a straightforward total correctness rule for loops in Figure 14.  The first

hypothesis confirms that the invariant is true for the loop.  The second one confirms that the

invariant is true at the beginning of the loop, and employs it in proving the assertion Q following

the loop.   In the expressions M_Exp is used to denote the mathematical expression that

corresponds to the condition B_Exp.  In the loop in Figure 13, the loop condition is Length(Q) ≠

0, and it corresponds to |Q| ≠ 0 from the specification of Length operation given in the Appendix.

We introduce ?u to denote the value of the variable u at the end of the loop.  Outcome_Exp needs

to be confirmed for whatever value u might have after the loop.  While the use of the variable

can be avoided in this first version of the loop rule, it becomes necessary in recording

displacement assertions.
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C \ Assume M_Exp[B_Exp] Ÿ Inv Ÿ P_Val = P_Exp;

body;

      Confirm Inv Ÿ P_Exp < P_Val;

C \ Code; Confirm Inv and

(" ?u: T, (ÿM_Exp[B_Exp] Ÿ Inv) [u _ ?u] fi Outcome_Exp[u _ ?u]);

C \  Code; While ( B_Exp ) affecting u; maintaining Inv; decreasing P_Exp; do

body

end;

Confirm Outcome_Exp;

Figure 14:  A Total Correctness Loop Rule

Figure 15 contains the loop rule for functionality and performance verification.  The first

hypothesis checks that the elapsed time and maximum manipulated displacement assertions are

invariants.  The second hypothesis is set up in the same way as the procedure call, using ?u to

denote the value of the variable u at the end of the loop and u to denote its value at the beginning.
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C \ Assume M_Exp(B_Exp) Ÿ Inv Ÿ P_Val = P_Exp Ÿ

Cum_Dur £ E_T_Exp Ÿ

Cur_Aug £ Disp(u) Ÿ Prior_Max_Aug £ M_D_ Exp;

body;

      Confirm  Inv Ÿ P_Exp < P_Val Ÿ

Cum_Dur + 0.0 £ E_T_Exp Ÿ

Max( Prior_Max_Aug, Cur_Aug + 0 ) £ M_D_Exp;

C \ Code; Confirm Inv Ÿ E_T_Exp ≥ 0.0 Ÿ M_D _Exp ≥ 0 Ÿ

" ?u: T, (ÿ M_Exp(B_Exp) Ÿ Inv)[u _ ?u] fi

       (Outcome_Exp Ÿ Cum_Dur + E_T_Exp + Sqnt_Dur_Exp £ Dur_Bd_Exp)[u _ ?u] Ÿ

     Max(Prior_Max_Aug, Cur_Aug - Disp(u) +

Max(M_D_Exp[u _ ?u], Fut_Sup_Disp_Exp[u _ ?u] + Disp(?u)))

£ Aug_Bd_Exp[u _ ?u];

——————————————————————————————————

C \Code; While ( B_Exp ) affecting u; maintaining Inv; decreasing P_Exp;

elapsed_time E_T_Exp; max_manip_disp M_D_Exp;

do body end;

Confirm Outcome_Exp Ÿ Cum_Dur + Sqnt_Dur_Exp £ Dur_Bd_Exp Ÿ

 Max(Prior_Max_Aug, Cur_Aug + Fut_ Sup_Disp_Exp) £ Aug_Bd_Exp;

Figure 15:  A Performance Correctness Loop Rule

The proof rules for other constructs such as if-then-else statements, swap statements, and

function assignments are straightforward.
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3.6. Verification of Main Programs

While we have concentrated this paper on performance specification and verification of a generic

procedure involving non-trivial objects, the overall objective is to verify that a program (or

process) works within specified time and space requirements.  This is accomplished by verifying

that the “main” or calling procedure or process with “total permissible time” as its duration

bound and “total memory capacity” as its displacement bound.  However, the specification and

verification of the calling program will be parameterized by inputs (and outputs) of that program.

It is the calling program that will fix the parameters of reusable concepts (e.g., the type Entry)

and choose specific implementations for the concepts and their enhancements.  Once these

choices are made, then in the performance analysis of the calling program, situational

assumptions can be checked and simplified performance expressions can be used for the reused

components.  The verification process discussed here makes it possible to accomplish this goal in

a modular fashion – one component at a time.

IV. SUMMARY

The importance of performance considerations in component-based software engineering is well

documented.  Designers of languages and developers of object-based component libraries have

considered alternative efficient implementations providing performance trade-offs, including

parameterization for performance.  While efficiency is important, performance predictability is

essential for high confidence systems.  To guarantee predictability, we need an analytical method

for performance prediction, i.e., to determine a priori if and when a system will fail due to

space/time limits.  We have explained how this basic need for predictable (software) engineering

can be addressed in a modular fashion, within modern software engineering tenets of abstraction

of objects and parameterized components.

Clearly, performance specification and analysis are complicated activities.  Bringing these results

into practice will require considerable education and sophisticated tools. More importantly,

current language and software design techniques for component-based software engineering that

focus on functional flexibility need to be re-evaluated with attention to predictable performance.
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APPENDIX

Figure 16 shows the specification of a Queue concept.  Queue_Template is a specification

template parameterized by the type of items to be contained in queues.

To reason mechanically or manually, but soundly, about a program that uses queues, it is

essential to have a mathematical conceptualization of Queue (and Integer) variables and

operations.  Using String_Theory, a mathematical unit that formally defines string notations, a

(parameterized) Queue is conceptualized as a string of entries. A string is similar to, but simpler

than, a “sequence” because it does not explicitly include the notion of a position. In

String_Theory, L stands for an empty string, a ° b denotes concatenation of two strings a and

b in the specified order, and |a | denotes the length of a string a . “<x>” denotes the string

containing the entry x.

RESOLVE specifications use a combination of standard mathematical models such as integers,

sets, functions, and relations, in addition to tuples and strings.  The explicit introduction of

mathematical models allows use of standard notations associated with those models in explaining

the operations.  Our experience is that this notation—which is precise and formal—is

nonetheless fairly easy to learn even for beginning computer science students, because they have

seen most of it in high school and earlier.
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Concept Queue_Template ( type Entry );

uses Std_Integer_Fac, String_Theory;

Type Family Queue Õ Str(Entry);

exemplar Q;

initialization ensures Q = L;

Operation Enqueue(clears E: Entry; updates Q: Queue);

ensures Q = #Q ° <#E>;

Operation Dequeue(replaces R: Entry; updates Q: Queue);

requiresQ > 0;

ensures #Q = <R> ° Q;

Operation Swap_First_Entry(updates E: Entry; updates Q: Queue);

requires Q > 0 ;

ensures  $ Rem: Str(Entry) ' #Q = <E> ° Rem and Q = <#E> ° Rem;

Operation Length(restores Q: Queue): Integer;

ensures Length = (Q);

Operation Clear(clears Q: Queue );

end Queue_Template;

Figure 16: Specification of a Queue_Template Concept

Using an exemplar queue variable Q, the specification tells a client what is true of every queue

variable.   From the initialization ensures clause, a client has the guarantee that whenever a

queue variable is declared, it has L for its initial value. (Occasionally, the initialization clause

may specify a set of possible initial values, instead of a single value.) The practice of providing

well-defined initial values, in situations where it is natural is often helpful to avoid a class of
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routine software errors.  The rest of the concept provides specifications of other Queue

operations.

Each operation is specified by a requires clause (precondition), which is an obligation for the

caller; and an ensures clause (postcondition), which must be guaranteed from a correct

implementation.  When users violate the requirements, guarantees become void.  Operation

Enqueue, for example, guarantees that after Enqueue is called, Q  will be updated to be the

incoming value of entry (denoted by #E) concatenated with the incoming queue (denoted by #Q).

Notice that the postcondition describes how the operation updates the value of S, but the return

value of E (which has the mode alters) remains unspecified.  In general, we allow ensures

clauses of operations to be loose to allow maximum flexibility for implementers.

In a similar fashion, the requirement and guarantee clauses on the Dequeue, Length,

Swap_Front, and Clear operations specify in string theoretic terms precisely what they will do.

The restores mode in the specification of Length has the meaning that the parametric queue is

unaffected by calls to these operations.  Clear gives its parametric queue Q the initial queue

value L, and it gets this meaning from the clears parameter mode.  (The evaluates mode allows

expressions to be passed as parameters.) The important point here is that by conceiving of queues

as strings, we can give a complete and coherent explanation of all of the operations on queues.

Absolutely no reference to details of any one implementation possibilities such as arrays,

pointers, or linked lists, is needed. Absence of such details simplifies understanding of the

concept for users yet provides developmental freedom for implementers of the concept, so long

as users and implementers adhere to their obligations and guarantees stated in the specification.
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