Specifications for the TB Inc. machine:

Memory: 1K

word: 24 bits

Registers: A, X, PC, MAR, MDR, IR, CC. A: accumulator X: used for comparison to set CC PC: program counter MAR: memory address register MDR: memory data register IR: instruction register CC = 0 when equal, 1 when <, and 2 when >.

Hardware Stack: must accommodate up to 10 entries

Instruction Set: Mneumonic	Opcode in hex	Effect
ADD m	40	$A \leftarrow (A) + mword$
STA m	0C	mword \leftarrow (A)
STCH m	54	$m \leftarrow rightmost byte (A)$
STX m	10	mword \leftarrow (X)
Jm	3C	$PC \leftarrow mword$
JSUB m	48	Push(PC, thestack); PC \leftarrow mword
RSUB	4C	Pop(PC, thestack)
LDA m	00	$A \leftarrow mword$
LDCH m	50	A (rightmost byte) \leftarrow m
HALT	FF	halt the CPU
LDX m	04	$X \leftarrow mword$
COMP m	28	Set CC by (A):(mword)
TIX m	2C	$X \leftarrow (X+1)$; CC set by
		(X):mword

mword: memory wordA means the register itself.(A) means the contents of A.

Addressing modes indicated by bits 8, 9, and 10:

000	direct		
010	indexed	based on the X register	
001	indirect	_	
011	indexed indirect		
1	immediate		
Opcode form:			
bits 0 - 7	opcode given in hexadecimal		
bit 8	immediate mode indicator		
bit 9	indexed addressing bit if bit $8 = 0$		
bit 10	indirect addressing bit if bit $8 = 0$		
bits 9 - 23	operand value (if immediate)		
	all values	right adjusted; zero fill	
	or truncat	te as needed	

I/O

One way to think of input is as records containing pairs of characters which simulate pairs of hexadecimal digits. Each pair of hex digits comprises a byte. An input record can have multiple contiguous bytes.

Error Detection

Your emulator should recognize incorrect opcodes and addresses beyond the bounds of available memory, in which case the emulator should terminate with an appropriate message. You should consider what other errors can and should be detected and what messages should appear to help the programmer.