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In our syntax, an Assume statement will be used to record what must be true at 

the beginning of the program in order for it to work correctly.  Similarly, a Confirm 

statement is used to record what should be true after the code is executed. 

Assume 0y ¹ ; 
 w/y:z = ; 
 if 0z ³ then abs := z 
          else abs := -z 
 endif; 

Confirm abs = w/y ;  

This program computes a real quotient, so we must be sure that the divisor y is 

nonzero.  The Assume clause accomplishes this.  The Confirm statement claims that, 

upon execution of the code, the value of the variable abs will be the absolute value of the 

quotient w/y. 

We can see that the Assume and Confirm clauses together serve to specify what 

the program does, by first screening out unsatisfactory input and finally by stating what 

will be true after program execution.  In addition to providing formal specifications, these 

assertions permit verification by forming a basis for developing appropriate proof rules. 

In the absolute value program, the constructs used are the If then else and the 

assignment statements, and so we need proof rules for these constructs and an 

explanation of what they mean.  The form of typical proof rules is illustrated by the rule 

for if then else statements: 

code: Assume B; code1; Confirm Q; 
code; Assume ¬B; code2; Confirm Q; 

--------------------------------------------------------------------------- 
code; If B then code1 else code2; endif; Confirm Q; 
 
The meaning of this rule (and of all future rules) is that the correctness of the 

bottom line can be deduced from the correctness of the top lines.  The code at the 
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beginning of each of the above lines is a sequence of statements, the first of which is 

usually an Assume statement.  Similarly, code1 and code2 also represent sequences of 

statements. 

To illustrate this rule we apply it to the absolute value example, but first we need 

a basic understanding of the overall proof process.  In general, we will have a proof rule 

to cover each different kind of statement in our programming language, and our proof 

construction process will involve the creation of a succession of lemmas.  This process 

begins with the statement immediately preceding the final Confirm statement and 

progresses backward through the code, applying the appropriate rule at each point.  More 

will be said about this order of rule application later. 

In our example, the code preceding the If then else statement consists of an 

Assume statement and an assignment.  Applying the If then else rule backwards yields 

two assertive programs which must then be proved correct: 

(1) Assume 0y ¹ ; 
        w/y:z = ; 
   Assume 0z ³ ; 
        abs := z; 
   Confirm abs = w/y ; 
 
(2) Assume 0y ¹ ; 
         w/y:z = ; 
   Assume ( )0z ³¬ ; 
          abs := -z; 
   Confirm abs = w/y ; 
 
We note that when we applied this rule, the If then else construct itself 

disappeared, having been replaced by two hypotheses, each containing fewer 

programming constructs than the original program.  Since both these hypotheses contain 

assignment statements, we look next at the proof rule for assignments: 
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code; Confirm Q [ ]exp ®x ; 
------------------------------------------------ 
code; x := exp; Confirm Q; 
 
As usual, the meaning of the rule is that in order to prove the bottom line, it is 

sufficient to prove the top line.  The symbol “® ” can be read as “replaced by.”  This rule 

says that we omit the assignment statement and rewrite the Confirm clause Q replacing 

all the instances of x by the expression exp, which was to have been assigned to x.   

 Applying this rule to our absolute value proof, we get: 
(1) Assume y ¹ 0; 
         z := w/y; 
     Assume z ³ 0; 
     Confirm z = w/y ; 
 
(2) Assume y ¹ 0; 
         z := w/y; 
      Assume ( )0  z³¬ ; 
      Confirm –z = w/y ; 
 
We now need a rule for Assume statements: 
code; Confirm P Þ  Q; 
------------------------------------ 
code; Assume P; Confirm Q; 
 
Applying the rule for Assume, we obtain: 
(1) Assume 0 y ¹ ; 
         z := w/y; 
      Confirm z ³  0 Þ  z = w/y ; 
 
(2) Assume y ¹  0; 
        z := w/y; 
     Confirm z < 0 Þ  -z = w/y ; 
Now we apply the assignment rule to each branch: 
(1) Assume y ¹  0; 

                Confirm w/y ³  0 Þ  w/y = w/y ; 
            (2) Assume 0 y ¹ ; 
                Confirm w/y w/y -  0 w/y =Þ< ; 
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 Another application of the Assume rule yields: 
(1) Confirm y ¹  0 Þ  ( )w/y  w/y  0 w/y =Þ³ ; 

(2) Confirm y ¹  0 Þ ( )w/y-  w/y  0 w/y  =Þ< ; 
To complete the proof we need a rule for Confirm: 
       Q 
-------------- 
Confirm Q; 

Applying the Confirm rule produces the following mathematical propositions: 
(1) y ¹  0 Þ  ( )w/y  w/y  0 w/y =Þ³  

(2) y ¹  0 Þ  ( )w/y w/y -  0 w/y =Þ<  
 
As the example illustrates, every reverse rule application produces one or more 

new hypotheses, each of which has fewer programming constructs than the conclusion 

line.  Ultimately, all the programming language syntax disappears, leaving hypothesis 

written strictly in the language of the underlying mathematical theory.  In this case that 

theory happens to be real number theory, which allows us to conclude that both of these 

assertions are true from the definition of absolute value. 

The part of the proof involving only the mathematical theory may strike the 

reader as particularly easy, and one may fear that only such obviously contrived examples 

as this will be so simple to verify.  However, throughout this thesis, example after 

example will show that this phenomenon is not peculiar to this simple program, but rather 

is a common occurrence.  In fact, we have not yet found any example in which the proof 

of program correctness requiresd more than simple use of mathematical definitions and 

straightforward applications of the appropriate theory.  This is really no surprise if one 

stops to consider that, in order to write the correct code, the programmer must know at an 

intuitive level whatever theorems underlie the reasoning he is using for program 

development. 
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In the verification literature, associated with every loop is a clause called the 

“loop invariant.”  As the name suggests, the loop invariant is an assertion, which is true 

both before and after each iteration of the loop.  The syntactic marker for the loop 

invariant is the keyword Maintaining.  A simple example illustrating the while loop 

construct is: 

Assume n ³  0; 
sum := 0; 
i := 0; 

Maintaining i j   sum n  
i

1j=
å=Ù£  

while i < n do 
        i := i + 1; 
        sum := sum +1; 
end; 

Confirm sum = j
n

1j=
å  

Here the invariant states that i never exceeds n and that at the beginning or end of any 

iteration, the variable sum contains the total of the first i integers.  This exactly describes 

what the loop is doing, namely computing a sequence of partial sums until it finally has 

the sum of the first n integers.  For convenience in what follows, we will name this 

particular loop invariant “Sum_Inv.”  That is, 

Sum_Inv = “i £  n Ù  sum = j 
i

1j=
å .” 

In order to verify this program, we will need the proof rule for while statements: 
 
code; Confirm Inv; 
Assume Inv Ù  B; body; Confirm Inv; 
Assume Inv ¬Ù  B; Confirm Q; 
---------------------------------------------------------- 
code; Maintaining Inv while B do body end; Confirm Q: 
 
Here the first hypothesis is that the invariant Inv be true before the loop is 

executed.  The second hypothesis requires that if Inv is true and the conditional B for the 
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loop is true and the body is executed, then Inv is true after execution, i.e., that Inv truly is 

an invariant.  The third says that the truth of Q should follow from the truth of Inv and ¬  

B, since they will both hold true when the loop terminates. 

We will now use this rule in establishing the correctness of the summation 

program.  As before, we will take for granted that the variables have been declared.  

Since the while loop is the last construct of this program, we apply that rule first,  

obtaining three hypotheses: 
(1) Assume n ³  0; sum := 0; i := 0; Confirm Sum_Inv; 
(2) Assume Sum_Inv Ù  i < n; i := i + 1; 

   sum := sum + i; Confirm Sum_Inv; 
(3)  Assume Sum_Inv Ù  i ³  n; 

   Confirm sum = j
n

1j=
å ;  

To prove correctness of the program, we must apply the appropriate proof rules to 

each of these hypotheses.  For the first, applying the assignment rule to i := 0 yields: 

(1) Assume n ³  0; sum := 0; 

    Confirm 0 £  n Ù  sum = j
0

1j=
å ; 

Applying the assignment rule to sum := 0 leads to: 
 

Assume n ³  0; 

Confirm 0 £  n Ù  0 = j
0

1j=
å ; 

Finally, using the rule for Assume, followed by the Confirm rule, we obtain: 

n ³  0 Þ  0 £  n Ù  0 = j
n

1j=
å ; 

This follows from the definition of å . 

In hypothesis (2), the body of the loop consists of two assignments, so we apply 

the assignment rule twice to obtain: 

   (2) Assume i Ù< n   Sum_Inv; 

          Confirm i + 1 £  n Ù  sum + i + 1 = j
1  i

1j

+

=
å ; 

 Applying the Assume and Confirm rules, we get 
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    i <  n Ù  i £  n Ù  sum = Þå
=
j

i

1j
 

    i + 1 £  n Ù  sum + i + 1 = j
1  i

1j

+

=
å  

This can be seen to be correct by adding i + 1 to both sides of the equation for sum in the 

hypothesis. 

 Hypothesis (3) expands out to: 

   (3) Assume i £  n Ù  sum = j
i

1j=
å  n  i ³Ù ; 

    Confirm sum = j
n

1j=
å ; 

Applying the rules for Assume and Confirm, we obtain: 
 

 i £  n Ù  sum = j
i

1j=
å  Þ³Ù n   i  

 sum = j
n

1j=
å  

From nini ³£  and , it follows that i = n, and we have the desired result. 

 To write the loop invariant, the programmer needed to know that the loop will 

have the total of the first i integers in sum after i iterations and that the highest value i 

will achieve is n.  But, of course, had the programmer not known both of those facts 

implicity, he would not have been able to write this program.  The point here is that loop 

invariants are not mysterious, nor do they requires deep mathematical insights, which 

most programmers are unlikely to have.  Loop invariants are simply descriptions of what 

the loop does. 

 

Just as a compiler must keep information about procedures so that it can do type checking 

of parameters and can find appropriate code into which to transfer control, the verifier 

must know certain information about procedures in order to be able to generate 

correctness proofs. 
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 When a procedure call is made in a program, the verifier does not need to see the 

code for that procedure at all, but rather it must know what the code does, i.e. what its 

specifications are.  So whenever a procedure is declared, the heading, which contains its 

specifications, is recorded in what we will call the program’s “context.” 

 To illustrate how procedures look, what the heading is, and where the 

specifications appear, we will present an example of a program fragment in which the 

number of permutations of n objects taken r at a time is computed.  To facilitate the 

computation, a procedure for calculating factorials is used.  The declaration of the 

factorial procedure is shown first: 

 Proc Find_Factorial (const n: integer, var fact: integer) 
          requires n ³  0; 
          ensures fact = n!; 
          fact := 1; 
          i := 0; 
          Maintaining fact = i! Ù  i £  n 
          while i < n do 
  i := i + 1; 
  fact := i * fact 
          end 
 end; 
 

The requires clause is a programmer supplied assertion which tells what restrictions 

must be met in order that, if the code is correct, the ensures clause will hold upon 

completion of the procedure body.  Together, the requires and ensures clauses form the 

specifications of the procedure.  The heading of the procedure consists of the first line 

and the specifications: 

 Proc Find_Factorial (const n: integer, var fact: integer); 

         requires n ³  0; 

         ensures fact = n!; 
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 For any given block of code, the verifier will first look at the declarations and put 

appropriate information into the context, i.e., save information which will be needed in 

order to apply the proof rules.  Then the verifier begins at the penultimate statement and 

proceeds toward the beginning of the program (usually an Assume statement), applying 

the appropriate rule as we have seen in the proceeding examples. 

 So, in this example, the verifier will have to put the heading of Find_Factorial into 

the correct context before applying the other rules necessary for proving correctness.  

Hence, if and when Find_Fact is called, the specifications telling what Find_Factorial 

does will be available.  It is clear that we need two new proof rules, one to handle 

procedure declarations and one for procedure calls.  The following is a simplified version 

of the procedure declaration rule: 

C È  {p_heading} \ Assume pre; Remember x; body; Confirm post; 
C È  {p_heading} \ code; Confirm Q; 
---------------------------------------------------------------------- 
C \ Proc p(var x: T); requires pre; ensures post; body; end code; Confirm Q; 
 
 Both hypotheses of the declaration rule indicate that the heading of the procedure 

being declared (but not its body) is to be placed in the context.  This makes all the 

necessary information about the procedure available so that it can be called from any part 

of the program, including from within itself.  The first hypothesis of the rule establishes 

that the procedure works as specified by requiring that, if the requires clause is met, then 

the ensures clause is true upon completion of the body of the procedure.  The requires 

clause pre is called the precondition of the procedure and the ensures clause post is 

called the postcondition. 

 In applying the procedure declaration rule to Find_Factorial, we note that the first 

hypothesis to consider will be: 
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C È  {Find_Fact_Heading} \ Assume n ³  0; Find_Fact_Body; 
    Confirm fact = n!; 
 
 Here C stands for whatever context already exists at the point of declaration of 

Find_Factorial, and as the rule shows, the Find_Fact_Heading is added to that context by 

the verifier.  The \ mark separates the context from the assertive program to be proved 

correct.  Find_Fact_Body is an abbreviation to stand for the code in the body of the 

Find_Factorial procedure.  We note that this hypothesis is in an already familiar form 

because it looks just like the preceding examples.  Indeed, in order to establish the stated 

hypothesis, we proceed exactly as we did in the examples already given, and we will find 

that the rules we need are ones we have seen before. 

Since the body of Find_Factorial ends with a while loop, it is the while rule that we apply 

first, thereby generating three hypotheses to check: 

(1) Assume n ³  0; fact := 1; i := 0; 
     Confirm fact = i! Ù  i £  n; 
(2) Assume fact = i! n  i n   i <Ù£Ù ; 
      i := i + 1; fact := i * fact; 
      Confirm fact = i! n  i £Ù ; 
(3) Assume fact = i! n  i n   i ³Ù£Ù ; 
      Confirm fact = n!; 
 

For (1) we apply the assignment rule twice, obtaining: 

(1) Assume n ³  0; Confirm 1 = 0! n  0 £Ù ; 

Applying the rules for Assume and Confirm, we get: 

n n  0  0!  1  0 £Ù=Þ³ ; 

The fact that 1 = 0! is a definition from number theory. 

Hypothesis (2) also requires two applications of the assignment rule and use of 

the rules for Assume and Confirm.  The result is: 
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fact = i! Þ<Ù£Ù n   i n   i  
(i + 1) * fact = (i + 1)! Ù  i + 1 £  n 
 

The first part of the conclusion can be proven by multiplying both sides of the equation 

fact = i! by i + 1.  The other part of the conclusion is obvious since i < n. 

 For hypothesis (3) we need to verify: 

(3) Assume fact = i! n  i n   i ³Ù£Ù ; 
    Confirm fact = n!; 
 

Applying the assume and confirm rules yields: 
 
fact = i! Þ³Ù£Ù n   i n   i  
fact = n!; 
 

Since i £  n and i ³  n, i = n.  Hence fact = i! implies that fact = n!. 
 
We have seen that an application of the proof rule for procedure declarations 

causes the context to be enriched with the procedure heading.  Such an application also 

establishes that if the parameters to the procedure meet the requires clause, then upon 

completion of the procedure body, the ensures clause is met. 

In case the post condition refers to old values of one of the parameters, we need 

the Remember rule: 

C \ code; Confirm RP[@s⇝s, @t⇝t];    
 ————————————————————————— 

C \ code; Remember s, t; Confirm RP/_ s, @s, t, @t, u, v, ⋯  _\; 
 

Next we will see how procedure calls work by examining a call to Find_Factorial.  

The following program fragment computes the number of permutations of n objects taken 

r at a time: 

 
   C \ Assume n ³  r ³  0; 
      Find_Factorial(n, nfact); 
      d := n – r; 
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      Find_Factorial(d, dfact); 
      Perm := nfact/dfact; 
      Confirm Perm = rn P ; 

 
To show correctness of this program fragment, we will need to apply the 

assignment rule first, followed by two applications of the call rule with an assignment 

between the two calls. 

The following is a simple version of the proof rule for procedure calls: 

   C \ code; Confirm pre[x ®a] 
   C \ code; Confirm "  ?a: T, post[@x ®  a, x ®  ?a] ÞQ[a ®  ?a] 
   ---------------------------------------------------------------------- 
   C \ code; p(a); Confirm Q 

 
Since the declaration rule establishes that if the requires clause is satisfied, then 

the ensures clause is met upon completion of the procedure body, the first hypothesis of 

the call rule checks that the requiresclause pre holds when the actual parameter a is 

substituted for the formal parameter x.  The second hypothesis asks that the ensures 

clause post imply Q.  The @ sign in front of the variable x refers to the value of x at the 

beginning of the procedure.  This distinguishes the old value of x from the current value.  

The extra complication here is the introduction of a new variable ?a to stand for the value 

of the actual parameter a after the procedure p has modified it. 

The call rule is simpler to understand in the version presented above, but in 

normal usage we don’t want to break out two separate hypotheses when a single, slightly 

lengthier one will do.  So we ordinarily combine this rule in a single hypothesis rule: 

   C \ code; Confirm pre[x ®  a]Ù  
           "  ?a: T, post[@x ®  a, x ®  ?a] ÞQ[a ®  ?a] 
   ----------------------------------------------------------------------- 
   C\ code; p(a); Confirm Q 
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With this rule available to us, we are ready to establish correctness of our program 

fragment.  Since the last executable statement in our fragment is an assignment, we apply 

the assignment rule first, obtaining: 

   C \ Assume n 0 r  ³³ ; 
      Find_Factorial(n, nfact); 
      d := n – r; 
      Find_Factorial(d, dfact); 
      Confirm nfact/dfact = rn P ; 

 
Next we need the call rule; 

   C \ Assume n 0 r  ³³ ; 
      Find_Factorial(n, nfact); 
      d := n – r; 
      Confirm d Þ"Ù³  ?dfact! integer,  :?dfact   0  
      nfact/?dfact = rn P ; 
 
Applying the assignment rule results in: 

   C \ Assume n 0 r  ³³ ; 
      Find_Factorial(n, nfact); 
      Confirm n - r Þ="Ù³  r)! -(n  ?dfact  integer,  :?dfact   0  
      nfact/?dfact = rn P ; 

Another application of the call rule yields: 

   C \ Assume n 0 r  ³³ ; 
      Confirm n Þ="Ù³  n! ?nfact  ?nfact,   0  
      n - r Þ="Ù³  r)! -(n  ?dfact  integer,  :?dfact   0  
      ?nfact/?dfact = rn P ; 

Upon applying the rules for Assume and Confirm, we get an implication: 

      n Þ="Ù³Þ³³  n! ?nfact  ?nfact,  0 n   0 r   
      (n - r Þ="Ù³  r)! -(n  ?dfact  integer,  :?dfact   0  
      ?nfact/?dfact = rn P ; 
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Since 0 n  0, r  n ³³³ .  Since ?nfact = n! and ?dfact = (n – r)!, by a definition in 

combinatorics, ?nfact/?dfact = rn P , since rn P = n!/(n – r)!  Hence our program fragment 

is correct. 

The two examples we have just presented performed calculations on integers in a 

programming style, which is typical for manipulating small objects, i.e., a constant 

parameter was passed to a procedure which performed some calculations and then 

assigned the resulting value to a variable parameter.  This is typical and reasonable 

because small objects take up little space, and psychologically it seems reasonable to 

have a new variable to represent the result of the operation while the original variable 

retains its value.  In the case of Find_Factorial, the constant parameter n remained fixed 

while the variable parameter fact had a new value after the computation was completed.  

Our simplified procedure declaration rule was sufficient for proving the correctness of 

procedures written in this style. 

However, this programming style is not desirable when programming with large 

objects, or even small ones in some cases.  For example, in sorting the elements of an 

array, a programmer would not want to create a new array each time a permutation of the 

given elements is made.  In order to consume both time and space, it is preferable to 

modify the existing array.  This means that there must be a way to specify what 

modification has been made, and this requires us to reference values of variables both 

before and after the change takes place.  To accommodate this need we have introduced 

the use of the symbol “@” to be placed in front of a variable var_name to indicate that its 

value at a given point in the program must be remembered as @var_name. 
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To illustrate the use of this idea, consider a trivial procedure which increments a 

given integer by a constant value.  Here, even though it may not require a lot of space to 

create a new integer to hold the incremented value, psychologically we expect the given 

variable to have its old value destroyed and replaced by its incremented value.  This 

procedure might be part of an integer package: 

Procedure Increment(var n: integer, const c: integer); 
   requires min_int£  n + c £  max_int; 
   ensures n = @n + c; 
   n := n + c; 
end; 
 

The requires clause makes sure that the result is within the bounds permitted for 

integers.  The ensures clause states that the new value of n will be the old value of n 

incremented by c. 

 Verification of procedures whose clauses refer to old values requires us to 

supplement our declaration rule as follows: 

   C È  {p_heading} \ Remember; Assume pre; body; Confirm post; 
  code; Confirm Q; 
------------------------------------------------------------------ 
   C \ Proc p(var x, const y); requires pre; ensures post; code; Confirm Q; 
 
 The new keyword, which appears here indicates that values of all variables are to 

be saved as of this point in the program.  The proof rule for Remember is: 

   C \ code; Confirm Shift(Q); 
   -------------------------------------------------- 
   C \ code; Remember; Confirm Q; 
 
   where Shift(Q) is defined by: 
 Shift(x) = x 
 Shift(c) = c for any constant c 
 Shift(@x) = x 
 Shift(f(e1,e2)) = f(Shift(e1), Shift(e2)) 
 
The Shift function removes one-pound sign from any given variable if one is there. 
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 At this point, we can now make some general observations about how our proof 
system works.  Although the programmer must supply certain clauses specifying program 
behavior, the generation of intermediate assertions is mechanical.  An automated verifier 
can determine syntactically what rule to apply at each step of the proof.  Moreover, when 
all the pertinent rules have bee applied, the statement which remain are ones involving 
only the mathematical theory for the given program, and the proof reasoning can then be 
completed using only traditional mathematical reasoning.   
 
 
An automatic verifier will perform three major tasks: (1) generation of assertions by 
applying the rules, (2) simplification of these assertions, probably as the verifier proceeds 
through the code, rather than all at once, and (3) application of axioms and theorems of 
the underlying mathematical theories in an attempt to prove the final assertion. 


