
 1

In our syntax, an Assume statement will be used to record what must be true at

the beginning of the program in order for it to work correctly. Similarly, a Confirm

statement is used to record what should be true after the code is executed.

Assume 0y ¹ ;
 w/y:z = ;
 if 0z ³ then abs := z
 else abs := -z
 endif;

Confirm abs = w/y ;

This program computes a real quotient, so we must be sure that the divisor y is

nonzero. The Assume clause accomplishes this. The Confirm statement claims that,

upon execution of the code, the value of the variable abs will be the absolute value of the

quotient w/y.

We can see that the Assume and Confirm clauses together serve to specify what

the program does, by first screening out unsatisfactory input and finally by stating what

will be true after program execution. In addition to providing formal specifications, these

assertions permit verification by forming a basis for developing appropriate proof rules.

In the absolute value program, the constructs used are the If then else and the

assignment statements, and so we need proof rules for these constructs and an

explanation of what they mean. The form of typical proof rules is illustrated by the rule

for if then else statements:

code: Assume B; code1; Confirm Q;
code; Assume ¬B; code2; Confirm Q;

code; If B then code1 else code2; endif; Confirm Q;

The meaning of this rule (and of all future rules) is that the correctness of the

bottom line can be deduced from the correctness of the top lines. The code at the

 2

beginning of each of the above lines is a sequence of statements, the first of which is

usually an Assume statement. Similarly, code1 and code2 also represent sequences of

statements.

To illustrate this rule we apply it to the absolute value example, but first we need

a basic understanding of the overall proof process. In general, we will have a proof rule

to cover each different kind of statement in our programming language, and our proof

construction process will involve the creation of a succession of lemmas. This process

begins with the statement immediately preceding the final Confirm statement and

progresses backward through the code, applying the appropriate rule at each point. More

will be said about this order of rule application later.

In our example, the code preceding the If then else statement consists of an

Assume statement and an assignment. Applying the If then else rule backwards yields

two assertive programs which must then be proved correct:

(1) Assume 0y ¹ ;
 w/y:z = ;
 Assume 0z ³ ;
 abs := z;
 Confirm abs = w/y ;

(2) Assume 0y ¹ ;
 w/y:z = ;
 Assume ()0z ³¬ ;
 abs := -z;
 Confirm abs = w/y ;

We note that when we applied this rule, the If then else construct itself

disappeared, having been replaced by two hypotheses, each containing fewer

programming constructs than the original program. Since both these hypotheses contain

assignment statements, we look next at the proof rule for assignments:

 3

code; Confirm Q []exp ®x ;
--
code; x := exp; Confirm Q;

As usual, the meaning of the rule is that in order to prove the bottom line, it is

sufficient to prove the top line. The symbol “® ” can be read as “replaced by.” This rule

says that we omit the assignment statement and rewrite the Confirm clause Q replacing

all the instances of x by the expression exp, which was to have been assigned to x.

 Applying this rule to our absolute value proof, we get:
(1) Assume y ¹ 0;
 z := w/y;
 Assume z ³ 0;
 Confirm z = w/y ;

(2) Assume y ¹ 0;
 z := w/y;
 Assume ()0 z³¬ ;
 Confirm –z = w/y ;

We now need a rule for Assume statements:
code; Confirm P Þ Q;

code; Assume P; Confirm Q;

Applying the rule for Assume, we obtain:
(1) Assume 0 y ¹ ;
 z := w/y;
 Confirm z ³ 0 Þ z = w/y ;

(2) Assume y ¹ 0;
 z := w/y;
 Confirm z < 0 Þ -z = w/y ;
Now we apply the assignment rule to each branch:
(1) Assume y ¹ 0;

 Confirm w/y ³ 0 Þ w/y = w/y ;
 (2) Assume 0 y ¹ ;
 Confirm w/y w/y - 0 w/y =Þ< ;

 4

 Another application of the Assume rule yields:
(1) Confirm y ¹ 0 Þ ()w/y w/y 0 w/y =Þ³ ;

(2) Confirm y ¹ 0 Þ ()w/y- w/y 0 w/y =Þ< ;
To complete the proof we need a rule for Confirm:
 Q

Confirm Q;

Applying the Confirm rule produces the following mathematical propositions:
(1) y ¹ 0 Þ ()w/y w/y 0 w/y =Þ³

(2) y ¹ 0 Þ ()w/y w/y - 0 w/y =Þ<

As the example illustrates, every reverse rule application produces one or more

new hypotheses, each of which has fewer programming constructs than the conclusion

line. Ultimately, all the programming language syntax disappears, leaving hypothesis

written strictly in the language of the underlying mathematical theory. In this case that

theory happens to be real number theory, which allows us to conclude that both of these

assertions are true from the definition of absolute value.

The part of the proof involving only the mathematical theory may strike the

reader as particularly easy, and one may fear that only such obviously contrived examples

as this will be so simple to verify. However, throughout this thesis, example after

example will show that this phenomenon is not peculiar to this simple program, but rather

is a common occurrence. In fact, we have not yet found any example in which the proof

of program correctness requiresd more than simple use of mathematical definitions and

straightforward applications of the appropriate theory. This is really no surprise if one

stops to consider that, in order to write the correct code, the programmer must know at an

intuitive level whatever theorems underlie the reasoning he is using for program

development.

 5

In the verification literature, associated with every loop is a clause called the

“loop invariant.” As the name suggests, the loop invariant is an assertion, which is true

both before and after each iteration of the loop. The syntactic marker for the loop

invariant is the keyword Maintaining. A simple example illustrating the while loop

construct is:

Assume n ³ 0;
sum := 0;
i := 0;

Maintaining i j sum n
i

1j=
å=Ù£

while i < n do
 i := i + 1;
 sum := sum +1;
end;

Confirm sum = j
n

1j=
å

Here the invariant states that i never exceeds n and that at the beginning or end of any

iteration, the variable sum contains the total of the first i integers. This exactly describes

what the loop is doing, namely computing a sequence of partial sums until it finally has

the sum of the first n integers. For convenience in what follows, we will name this

particular loop invariant “Sum_Inv.” That is,

Sum_Inv = “i £ n Ù sum = j
i

1j=
å .”

In order to verify this program, we will need the proof rule for while statements:

code; Confirm Inv;
Assume Inv Ù B; body; Confirm Inv;
Assume Inv ¬Ù B; Confirm Q;
--
code; Maintaining Inv while B do body end; Confirm Q:

Here the first hypothesis is that the invariant Inv be true before the loop is

executed. The second hypothesis requires that if Inv is true and the conditional B for the

 6

loop is true and the body is executed, then Inv is true after execution, i.e., that Inv truly is

an invariant. The third says that the truth of Q should follow from the truth of Inv and ¬

B, since they will both hold true when the loop terminates.

We will now use this rule in establishing the correctness of the summation

program. As before, we will take for granted that the variables have been declared.

Since the while loop is the last construct of this program, we apply that rule first,

obtaining three hypotheses:
(1) Assume n ³ 0; sum := 0; i := 0; Confirm Sum_Inv;
(2) Assume Sum_Inv Ù i < n; i := i + 1;

 sum := sum + i; Confirm Sum_Inv;
(3) Assume Sum_Inv Ù i ³ n;

 Confirm sum = j
n

1j=
å ;

To prove correctness of the program, we must apply the appropriate proof rules to

each of these hypotheses. For the first, applying the assignment rule to i := 0 yields:

(1) Assume n ³ 0; sum := 0;

 Confirm 0 £ n Ù sum = j
0

1j=
å ;

Applying the assignment rule to sum := 0 leads to:

Assume n ³ 0;

Confirm 0 £ n Ù 0 = j
0

1j=
å ;

Finally, using the rule for Assume, followed by the Confirm rule, we obtain:

n ³ 0 Þ 0 £ n Ù 0 = j
n

1j=
å ;

This follows from the definition of å .

In hypothesis (2), the body of the loop consists of two assignments, so we apply

the assignment rule twice to obtain:

 (2) Assume i Ù< n Sum_Inv;

 Confirm i + 1 £ n Ù sum + i + 1 = j
1 i

1j

+

=
å ;

 Applying the Assume and Confirm rules, we get

 7

 i < n Ù i £ n Ù sum = Þå
=
j

i

1j

 i + 1 £ n Ù sum + i + 1 = j
1 i

1j

+

=
å

This can be seen to be correct by adding i + 1 to both sides of the equation for sum in the

hypothesis.

 Hypothesis (3) expands out to:

 (3) Assume i £ n Ù sum = j
i

1j=
å n i ³Ù ;

 Confirm sum = j
n

1j=
å ;

Applying the rules for Assume and Confirm, we obtain:

 i £ n Ù sum = j
i

1j=
å Þ³Ù n i

 sum = j
n

1j=
å

From nini ³£ and , it follows that i = n, and we have the desired result.

 To write the loop invariant, the programmer needed to know that the loop will

have the total of the first i integers in sum after i iterations and that the highest value i

will achieve is n. But, of course, had the programmer not known both of those facts

implicity, he would not have been able to write this program. The point here is that loop

invariants are not mysterious, nor do they requires deep mathematical insights, which

most programmers are unlikely to have. Loop invariants are simply descriptions of what

the loop does.

Just as a compiler must keep information about procedures so that it can do type checking

of parameters and can find appropriate code into which to transfer control, the verifier

must know certain information about procedures in order to be able to generate

correctness proofs.

 8

 When a procedure call is made in a program, the verifier does not need to see the

code for that procedure at all, but rather it must know what the code does, i.e. what its

specifications are. So whenever a procedure is declared, the heading, which contains its

specifications, is recorded in what we will call the program’s “context.”

 To illustrate how procedures look, what the heading is, and where the

specifications appear, we will present an example of a program fragment in which the

number of permutations of n objects taken r at a time is computed. To facilitate the

computation, a procedure for calculating factorials is used. The declaration of the

factorial procedure is shown first:

 Proc Find_Factorial (const n: integer, var fact: integer)
 requires n ³ 0;
 ensures fact = n!;
 fact := 1;
 i := 0;
 Maintaining fact = i! Ù i £ n
 while i < n do
 i := i + 1;
 fact := i * fact
 end
 end;

The requires clause is a programmer supplied assertion which tells what restrictions

must be met in order that, if the code is correct, the ensures clause will hold upon

completion of the procedure body. Together, the requires and ensures clauses form the

specifications of the procedure. The heading of the procedure consists of the first line

and the specifications:

 Proc Find_Factorial (const n: integer, var fact: integer);

 requires n ³ 0;

 ensures fact = n!;

 9

 For any given block of code, the verifier will first look at the declarations and put

appropriate information into the context, i.e., save information which will be needed in

order to apply the proof rules. Then the verifier begins at the penultimate statement and

proceeds toward the beginning of the program (usually an Assume statement), applying

the appropriate rule as we have seen in the proceeding examples.

 So, in this example, the verifier will have to put the heading of Find_Factorial into

the correct context before applying the other rules necessary for proving correctness.

Hence, if and when Find_Fact is called, the specifications telling what Find_Factorial

does will be available. It is clear that we need two new proof rules, one to handle

procedure declarations and one for procedure calls. The following is a simplified version

of the procedure declaration rule:

C È {p_heading} \ Assume pre; Remember x; body; Confirm post;
C È {p_heading} \ code; Confirm Q;
--
C \ Proc p(var x: T); requires pre; ensures post; body; end code; Confirm Q;

 Both hypotheses of the declaration rule indicate that the heading of the procedure

being declared (but not its body) is to be placed in the context. This makes all the

necessary information about the procedure available so that it can be called from any part

of the program, including from within itself. The first hypothesis of the rule establishes

that the procedure works as specified by requiring that, if the requires clause is met, then

the ensures clause is true upon completion of the body of the procedure. The requires

clause pre is called the precondition of the procedure and the ensures clause post is

called the postcondition.

 In applying the procedure declaration rule to Find_Factorial, we note that the first

hypothesis to consider will be:

 10

C È {Find_Fact_Heading} \ Assume n ³ 0; Find_Fact_Body;
 Confirm fact = n!;

 Here C stands for whatever context already exists at the point of declaration of

Find_Factorial, and as the rule shows, the Find_Fact_Heading is added to that context by

the verifier. The \ mark separates the context from the assertive program to be proved

correct. Find_Fact_Body is an abbreviation to stand for the code in the body of the

Find_Factorial procedure. We note that this hypothesis is in an already familiar form

because it looks just like the preceding examples. Indeed, in order to establish the stated

hypothesis, we proceed exactly as we did in the examples already given, and we will find

that the rules we need are ones we have seen before.

Since the body of Find_Factorial ends with a while loop, it is the while rule that we apply

first, thereby generating three hypotheses to check:

(1) Assume n ³ 0; fact := 1; i := 0;
 Confirm fact = i! Ù i £ n;
(2) Assume fact = i! n i n i <Ù£Ù ;
 i := i + 1; fact := i * fact;
 Confirm fact = i! n i £Ù ;
(3) Assume fact = i! n i n i ³Ù£Ù ;
 Confirm fact = n!;

For (1) we apply the assignment rule twice, obtaining:

(1) Assume n ³ 0; Confirm 1 = 0! n 0 £Ù ;

Applying the rules for Assume and Confirm, we get:

n n 0 0! 1 0 £Ù=Þ³ ;

The fact that 1 = 0! is a definition from number theory.

Hypothesis (2) also requires two applications of the assignment rule and use of

the rules for Assume and Confirm. The result is:

 11

fact = i! Þ<Ù£Ù n i n i
(i + 1) * fact = (i + 1)! Ù i + 1 £ n

The first part of the conclusion can be proven by multiplying both sides of the equation

fact = i! by i + 1. The other part of the conclusion is obvious since i < n.

 For hypothesis (3) we need to verify:

(3) Assume fact = i! n i n i ³Ù£Ù ;
 Confirm fact = n!;

Applying the assume and confirm rules yields:

fact = i! Þ³Ù£Ù n i n i
fact = n!;

Since i £ n and i ³ n, i = n. Hence fact = i! implies that fact = n!.

We have seen that an application of the proof rule for procedure declarations

causes the context to be enriched with the procedure heading. Such an application also

establishes that if the parameters to the procedure meet the requires clause, then upon

completion of the procedure body, the ensures clause is met.

In case the post condition refers to old values of one of the parameters, we need

the Remember rule:

C \ code; Confirm RP[@s⇝s, @t⇝t];
 —————————————————————————

C \ code; Remember s, t; Confirm RP/_ s, @s, t, @t, u, v, ⋯ _\;

Next we will see how procedure calls work by examining a call to Find_Factorial.

The following program fragment computes the number of permutations of n objects taken

r at a time:

 C \ Assume n ³ r ³ 0;
 Find_Factorial(n, nfact);
 d := n – r;

 12

 Find_Factorial(d, dfact);
 Perm := nfact/dfact;
 Confirm Perm = rn P ;

To show correctness of this program fragment, we will need to apply the

assignment rule first, followed by two applications of the call rule with an assignment

between the two calls.

The following is a simple version of the proof rule for procedure calls:

 C \ code; Confirm pre[x ®a]
 C \ code; Confirm " ?a: T, post[@x ® a, x ® ?a] ÞQ[a ® ?a]
 --
 C \ code; p(a); Confirm Q

Since the declaration rule establishes that if the requires clause is satisfied, then

the ensures clause is met upon completion of the procedure body, the first hypothesis of

the call rule checks that the requiresclause pre holds when the actual parameter a is

substituted for the formal parameter x. The second hypothesis asks that the ensures

clause post imply Q. The @ sign in front of the variable x refers to the value of x at the

beginning of the procedure. This distinguishes the old value of x from the current value.

The extra complication here is the introduction of a new variable ?a to stand for the value

of the actual parameter a after the procedure p has modified it.

The call rule is simpler to understand in the version presented above, but in

normal usage we don’t want to break out two separate hypotheses when a single, slightly

lengthier one will do. So we ordinarily combine this rule in a single hypothesis rule:

 C \ code; Confirm pre[x ® a]Ù
 " ?a: T, post[@x ® a, x ® ?a] ÞQ[a ® ?a]

 C\ code; p(a); Confirm Q

 13

With this rule available to us, we are ready to establish correctness of our program

fragment. Since the last executable statement in our fragment is an assignment, we apply

the assignment rule first, obtaining:

 C \ Assume n 0 r ³³ ;
 Find_Factorial(n, nfact);
 d := n – r;
 Find_Factorial(d, dfact);
 Confirm nfact/dfact = rn P ;

Next we need the call rule;

 C \ Assume n 0 r ³³ ;
 Find_Factorial(n, nfact);
 d := n – r;
 Confirm d Þ"Ù³ ?dfact! integer, :?dfact 0
 nfact/?dfact = rn P ;

Applying the assignment rule results in:

 C \ Assume n 0 r ³³ ;
 Find_Factorial(n, nfact);
 Confirm n - r Þ="Ù³ r)! -(n ?dfact integer, :?dfact 0
 nfact/?dfact = rn P ;

Another application of the call rule yields:

 C \ Assume n 0 r ³³ ;
 Confirm n Þ="Ù³ n! ?nfact ?nfact, 0
 n - r Þ="Ù³ r)! -(n ?dfact integer, :?dfact 0
 ?nfact/?dfact = rn P ;

Upon applying the rules for Assume and Confirm, we get an implication:

 n Þ="Ù³Þ³³ n! ?nfact ?nfact, 0 n 0 r
 (n - r Þ="Ù³ r)! -(n ?dfact integer, :?dfact 0
 ?nfact/?dfact = rn P ;

 14

Since 0 n 0, r n ³³³ . Since ?nfact = n! and ?dfact = (n – r)!, by a definition in

combinatorics, ?nfact/?dfact = rn P , since rn P = n!/(n – r)! Hence our program fragment

is correct.

The two examples we have just presented performed calculations on integers in a

programming style, which is typical for manipulating small objects, i.e., a constant

parameter was passed to a procedure which performed some calculations and then

assigned the resulting value to a variable parameter. This is typical and reasonable

because small objects take up little space, and psychologically it seems reasonable to

have a new variable to represent the result of the operation while the original variable

retains its value. In the case of Find_Factorial, the constant parameter n remained fixed

while the variable parameter fact had a new value after the computation was completed.

Our simplified procedure declaration rule was sufficient for proving the correctness of

procedures written in this style.

However, this programming style is not desirable when programming with large

objects, or even small ones in some cases. For example, in sorting the elements of an

array, a programmer would not want to create a new array each time a permutation of the

given elements is made. In order to consume both time and space, it is preferable to

modify the existing array. This means that there must be a way to specify what

modification has been made, and this requires us to reference values of variables both

before and after the change takes place. To accommodate this need we have introduced

the use of the symbol “@” to be placed in front of a variable var_name to indicate that its

value at a given point in the program must be remembered as @var_name.

 15

To illustrate the use of this idea, consider a trivial procedure which increments a

given integer by a constant value. Here, even though it may not require a lot of space to

create a new integer to hold the incremented value, psychologically we expect the given

variable to have its old value destroyed and replaced by its incremented value. This

procedure might be part of an integer package:

Procedure Increment(var n: integer, const c: integer);
 requires min_int£ n + c £ max_int;
 ensures n = @n + c;
 n := n + c;
end;

The requires clause makes sure that the result is within the bounds permitted for

integers. The ensures clause states that the new value of n will be the old value of n

incremented by c.

 Verification of procedures whose clauses refer to old values requires us to

supplement our declaration rule as follows:

 C È {p_heading} \ Remember; Assume pre; body; Confirm post;
 code; Confirm Q;
--
 C \ Proc p(var x, const y); requires pre; ensures post; code; Confirm Q;

 The new keyword, which appears here indicates that values of all variables are to

be saved as of this point in the program. The proof rule for Remember is:

 C \ code; Confirm Shift(Q);
 --
 C \ code; Remember; Confirm Q;

 where Shift(Q) is defined by:
 Shift(x) = x
 Shift(c) = c for any constant c
 Shift(@x) = x
 Shift(f(e1,e2)) = f(Shift(e1), Shift(e2))

The Shift function removes one-pound sign from any given variable if one is there.

 16

 At this point, we can now make some general observations about how our proof
system works. Although the programmer must supply certain clauses specifying program
behavior, the generation of intermediate assertions is mechanical. An automated verifier
can determine syntactically what rule to apply at each step of the proof. Moreover, when
all the pertinent rules have bee applied, the statement which remain are ones involving
only the mathematical theory for the given program, and the proof reasoning can then be
completed using only traditional mathematical reasoning.

An automatic verifier will perform three major tasks: (1) generation of assertions by
applying the rules, (2) simplification of these assertions, probably as the verifier proceeds
through the code, rather than all at once, and (3) application of axioms and theorems of
the underlying mathematical theories in an attempt to prove the final assertion.

