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I. PROGRAM VERIFICATION 
A perennial problem with all software is getting it to be correct.  This is a particularly severe 
problem with software that is to be reused, because the consequences of any residual errors will 
be so widespread.  Accordingly much software development effort is devoted to such pragmatic 
error detection and prevention measures as design review, code walk through, independent 
testing, etc. 
 
In theory, at least, if we have been careful to specify formally what a piece of software is 
supposed to do, we should actually be able to prove mathematically that it is correct (if it really 
is).  In fact, this proof process turns out to be reasonably straightforward, but tedious, to carry out 
for normal programs. 
 
It is perhaps easiest to understand the program proof process by looking at a simple example.  
Suppose that we want to verify a piece of code whose purpose is to reverse a stack S. 
Assume S_Reversed = L and |S| ≤ Max_Depth; 
Remember 
  While Depth_of(S) ¹ 0 
   maintaining @S = S_ReversedRev◦S and |@S| ≤ Max_Depth; 
  do 
   Pop( Next_Entry, S ); 
   Push( Next_Entry, S_Reversed ); 
  end; 
  S :=: S_Reversed; 
  Confirm S = @SRev and S_Reversed = L; 
forget; 
Here we presuppose that the stacks S and S_Reversed and the entry Next_Entry have been 
declared to be of the appropriate types.  The Assume statement tells us what we know about the 
situation when our code starts, and the Confirm statement tells us what should be true when it 
finishes.  The Remember part of the Remember-forget pair just indicates the point at which 
@S gets its value. 
 
A program with such Assume and Confirm statements is called an assertive program and, in a 
case such as this, these assertive statements would typically come from the requires and ensures 
clauses of some operation. 
 
The objective of proof process is to establish that a particular assertive program is correct.  As in 
a normal mathematical proof, this is done by developing a sequence of progressively more 
complex assertions each of whose correctness follows by some obvious principle (proof rule) 
from the correctness of earlier assertions in the sequence.   As a practical matter, it is usually 
easier to discover such a sequence of assertions by working backwards, starting from the 
assertive program that we wish to prove correct and discovering simpler assertive programs 
which, if they could be proved correct, would allow us to deduce the correctness of subsequent 
assertive programs. 
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In the case of our example, we might try to reformulate a simpler version of our assertive 
program by attempting to remove the swap statement S :=: S_Reversed, but if we did so, we 
would have to be careful to modify the Confirm statement appropriately.  The result would be: 
Assume S_Reversed = L and |S| ≤ Max_Depth; 
Remember 
  While Depth_of(S) ¹ 0 
   maintaining @S = S_ReversedRev◦S and |@S| ≤ Max_Depth; 
  do 
   Pop( Next_Entry, S ); 
   Push( Next_Entry, S_Reversed ); 
  end; 
  Confirm S_Reversed = (@S)Rev and S = L; 
forget; 
It is clear that if this slightly shorter program is correct, then our original would also be correct.  
Technically, we would justify that deduction by an application of a general proof rule for swap 
statements which is written schematically as: 
 
code; Confirm Q[x ⇝ y, y ⇝ x] 
———————————————————— 
code; x :=: y; Confirm Q; 
 
This rule simply says that the correctness of a program which ends with a swap statement x :=: y 
followed by a Confirm statement for an assertion Q follows from the correctness of the shorter 
assertive program which omits the swap statement but replaces all occurrences in Q of x by y and 
of y by x. 
 
There are similar general proof rules covering each different kind of programming statement.  
The rule for the If statement, for example is: 
 
code; Assume B; code1; Confirm Q; 
code; Assume ¬ B; code2; Confirm Q; 
———————————————————————————————— 
code; If B then code1 else code2 end_if; Confirm Q; 
 
It just says that, in order to prove the correctness of a program whose next to last statement is an 
If statement, you can prove the correctness of two shorter programs, one of which follows the 
"then" branch, while the other follows the "else" branch. 
 
The rule for while statements is: 
 
code; Confirm I; 
Assume I and B; body; Confirm I; 
( I and ¬ B ) Þ Q 
—————————————————————————————————— 
code; While B maintaining I do body end; Confirm Q; 
 
It says that when the next to last statement is a While statement, you need to prove three 
hypotheses are correct.  The first hypothesis says that the proposed loop invariant I is true when 
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the loop is reached.  The second hypothesis says that executing the body of the While loop does 
not invalidate the loop invariant I. (i.e., I is really an invariant for this loop).  The third 
hypothesis guarantees that the post condition Q will always be true whenever the loop 
terminates. 
 
For our example the While rule gives us the three hypotheses: 
(1) Assume S_Reversed = L and |S| ≤ Max_Depth; 
Remember 
  Confirm @S = S_ReversedRev◦S and |@S| ≤ Max_Depth; 
forget 
 
(2) Assume @S = S_ReversedRev◦S and |@S| ≤ Max_Depth and |S| ¹ 0 ); 
Pop( Next_Entry, S ); 
Push( Next_Entry, S_Reversed ); 
Confirm @S = S_ReversedRev◦S and |@S| ≤ Max_Depth; 
 
(3) ( @S = S_ReversedRev◦S and |@S| ≤ Max_Depth and |S| = 0 ) Þ 

S_Reversed = (@S)Rev and |S| = 0 
 
The third hypothesis is easy to prove correct using an ordinary mathematical proof in string theory. 
(|S| = 0, so S = L, so @S = S_ReversedRev.  S_Reversed = (S_ReversedRev)Rev = (@S)Rev.) 
 
To continue with the first hypothesis, we need the proof rule for the Remember-forget  
construct. 
 
code; Confirm Remove@[Q]; 
———————————————————————— 
code; Remember; Confirm Q; forget; 
 
It simply says that, since the Remember sets the values of all @x’s to agree with the 
corresponding values of the ordinary variables x, we can just treat the @x’s as synonyms for x’s 
at this point by using the Remove@ operator to strip @’s out of Q.  We are left with: 
(1) Assume S_Reversed = L and |S| ≤ Max_Depth; 
Confirm S = S_ReversedRev◦S and |S| ≤ Max_Depth; 
 
Now we need the Assume rule: 
 
code; Confirm P Þ Q; 
—————————————————— 
code; Assume P; Confirm Q; 
 
In our case it produces: 
(1) Confirm ( S_Reversed = L and |S| ≤ Max_Depth ) Þ 

S = S_ReversedRev◦S and |S| ≤ Max_Depth; 
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Technically we now need the Confirm rule to get us back into an ordinary mathematical proof 
mode: 
 
  Q 
——————— 
Confirm Q; 
 
This rule just says that, if a program consists only of a Confirm statement, then you must prove 
in ordinary mathematics that its assertion Q is valid.  In this case we must prove the easy string 
theory result: 
(1) ( S_Reversed = L and |S| ≤ Max_Depth ) Þ S = S_ReversedRev◦S and |S| ≤ Max_Depth. 
 
The second hypothesis involves us with the pair of rules that cover procedure calls and 
declarations, and it is probably more logical to start by considering the rule for declarations. 
 
The extra complication here is that procedure declarations occur at a place in the program text 
which is remote from the various places where the procedure is actually used (i.e. called).  The 
specification for a procedure will be needed in both the places where it is called and where it is 
declared.  We will use a mechanism called a context to link together a procedure’s declaration 
with its various uses.  In general, a context C will consist of the specifications (headings) of all of 
the procedures that are available to a given piece of code, and we will use a “\” symbol to 
separate it from the code it applies to, that is, we will write “C \ code”. 
 
With this extra mechanism, then, the rule for procedure declaration becomes: 
 
C !{Oper p(x, y); req pre; ens post;} \ Assume pre; Remember; body; 

Confirm post and y = @y; forget; 
C !{Oper p(x, y); req pre; ens post;} \ code; Confirm Q;         
——————————————————————————————————————————————————————— 
C  \ Oper p(var x: T; pres y: T); 
     requires pre/x, y\; 
     ensures post/x, @x, y\; 
    procedure 
     body; 
  end p; code; Confirm Q; 
 
The first hypothesis requires that the p procedure meet its specification (the postcondition post) 
assuming that its input requirement (the precondition pre) is met.  The second hypothesis 
requires that the rest of the program code work correctly, assuming, of course, that p works 
properly.  Note that the assumption that p works properly is also available in the proof of 
correctness of the body of p so that recursive procedures can also be verified. 
 
In our example, we can assume that the procedure declaration rule has already been applied to 
push and pop so that their specifications would already be available in the context.  Technically, 
all of the proof rules that we have seen so far should be upgraded so that they carry the context 
along properly.  For example, the swap rule would become: 
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C  \ code; Confirm Q[x ⇝ y, y ⇝ x]; 
——————————————————————— 
C  \ code; x :=: y; Confirm Q; 
 
It should be clear that this poses no problem. 
 
All we need now to complete our example program is the proof rule for procedure calls: 
 
C !{Oper p( upd x, rest y); req pre; ens post}  \ code; 

Confirm pre[x ⇝ a, y ⇝ b] and " ?a: T, if post[x ⇝ ?a, @x ⇝ a, y ⇝ b], then Q[a ⇝ ?a]; 
———————————————————————————————————————————————————————— 
C !{Oper p(var x, pres y); req pre; ens post} \ code; p(a, b); Confirm Q; 
    
The first part of the Confirm statement in the hypothesis requires that the precondition pre for p 
be met when p is called.  Note that the formal parameters x and y are replaced by the actual 
parameters a and b.  The next part requires that the postcondition post tell enough about what p 
does that the conclusion Q can be established.  The new variable ?a stands for the value of a 
after the procedure p has been executed. 
 
For our example we may assume that our context C contains the heading: 
 
  Oper Push( upd E: Entry; upd S: Stack ); 
   req |S| < Max_Depth; 
   ens S = á@Eñ°@S and Entry.Is_Initial( E ); 
 
Applying the call rule then gives us: 
   
(2) C  \ Assume @S = S_ReversedRev◦S and |@S| ≤ Max_Depth and ¬( S = L ); 
  Pop( Next_Entry, S ); 
  Confirm |S_Reversed| < Max_Depth and 
   " ?Next_Entry: Entry, " ?S_Reversed: Stack, 
   if ?S_Reversed = áNext_Entryñ◦S_Reversed and Entry.Is_Initial( ?Next_Entry ) 
    then @S = ?S_ReversedRev◦S and |@S| ≤ Max_Depth; 
 
Here the final Confirm statement simplifies somewhat to:  
 
Confirm |S_Reversed| < Max_Depth and 
  @S = ( áNext_Entryñ◦S_Reversed )Rev◦S and |@S| ≤ Max_Depth; 
 
Next we need the call rule as applied to Pop.  From the context we get the heading: 
 
  Oper Pop( rpl R: Entry; upd S: Stack); 
   req S ¹ L; 
   ens @S = áRñ◦S; 
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Our example then becomes: 
(2) C  \ Assume @S = S_ReversedRev◦S and |@S| ≤ Max_Depth and ¬( S = L ); 
  Confirm S ¹ L and " ?Next_Entry: Entry, " ?S: Stack, 
   if S = á?Next_Entryñ◦?S then |S_Reversed| < Max_Depth and 

@S = ( á?Next_Entryñ◦S_Reversed )Rev◦?S and |@S| ≤ Max_Depth; 
An application of the Assume rule leaves us to verify: 
(2) C  \ Confirm if @S = S_ReversedRev◦S and |@S| ≤ Max_Depth and S ¹ L and 
   S = á?Next_Entryñ◦?S, then S ¹ L  and |S_Reversed| < Max_Depth and 

@S = ( á?Next_Entryñ◦S_Reversed )Rev◦?S and |@S| ≤ Max_Depth; 
    
Simplifying and applying the Confirm rule leaves the proposition: 
(2) If @S = S_ReversedRev◦S and |@S| ≤ Max_Depth and S = á?Next_Entryñ◦?S,  
  then |S_Reversed| < Max_Depth and @S = ( á?Next_Entryñ◦S_Reversed )Rev◦?S. 
 
The second conclusion here follows by substituting for S in the equation: 
@S = S_ReversedRev◦S 
   = S_ReversedRev◦( á?Next_Entryñ◦?S ) 
   = ( S_ReversedRev◦á?Next_Entryñ )◦?S 
   = ( á?Next_Entryñ◦S_Reversed )Rev◦?S 
 
The first conclusion follows by substituting for @S and S in the inequality: 
             |@S| ≤ Max_Depth 
       |S_ReversedRev◦S| = 
|S_ReversedRev◦( á?Next_Entryñ◦?S )| = 
|S_ReversedRev| + |á?Next_Entryñ◦?S| = 
|S_Reversed| + |á?Next_Entryñ| + |?S| = 
     |S_Reversed| + |á?Next_Entryñ| ≤ 
        |S_Reversed| + 1 = 
         |S_Reversed| < 
 


