
 

J-1

 

A
P

P
E

N
D

IX

 

J

 

Namespaces

 

Introduction

 

Namespaces

 

 are an ANSI C++ feature that allows programmers to create a scope for global
identifiers. They are useful in preventing errors when two or more global declarations use
the same name.

For example, assume you are a programmer in the accounting department of a business.
Your company has purchased two libraries of C++ class objects from a software vendor.
One of the libraries is designed to handle customer accounts, and contains a class object
named 

 

payable

 

. The other library is designed to handle company payroll, and also has a
class object named 

 

payable

 

. You are writing a program that integrates both sets of classes,
but the compiler generates an error because the two class objects have the same name. You
cannot modify the class libraries because the software vendor does not sell the source code,
only libraries of object code.

This problem can be solved when the software vendor places each set of classes in its own
namespace. Each namespace has its own name, which must be used to qualify the name of
its members. For instance, the 

 

payable

 

 object that is part of the customer accounts library
might exist in a namespace named 

 

customer

 

, while the object that is part of the employee
payroll library might exist in a namespace named 

 

payroll

 

. When you, the application
programmer, work with the objects, you must specify the namespace that the object is a
member of. One way of accomplishing this is by extending the name of the object with the
namespace name, using the scope resolution operator. For example, the 

 

payable

 

 object
that is a member of the 

 

customer

 

 namespace is specified as 

 

customer::payable

 

, and the
object that is a member of the 

 

payroll

 

 namespace is specified as 

 

payroll::payable

 

.
Another way to specify the namespace is by placing a 

 

using

 

 

 

namespace

 

 statement in the
source file that references the namespace’s member object. For example, the following
statement (placed near the beginning of a source file) instructs the compiler that the file
uses members of the 

 

customer

 

 namespace.

 

using namespace customer;

 

Z10_GADD0929_07_SE_APPJ.fm  Page 1  Friday, August 2, 2013  10:27 AM



 

J-2

 

Appendix J Namespaces

 

Likewise, the following statement instructs the compiler that the source file uses members
of the 

 

payroll

 

 namespace:

 

using namespace payroll;

 

When a 

 

using namespace

 

 statement has been placed in a source file, it is no longer necessary
for statements in that source file to qualify the names of the namespace’s members with the
namespace name and the scope resolution operator.

 

Defining a Namespace

 

A namespace is defined in the following manner.

 

namespace 

 

namespace_name

 

{

 

declarations…

 

}

 

For example, look at Program J-1. It defines the 

 

test

 

 namespace, which has three members:

 

x

 

, 

 

y

 

, and 

 

z

 

.

In Program J-1, the variables 

 

x

 

, 

 

y

 

, and 

 

z

 

 are defined in the 

 

test

 

 namespace’s scope. Each
time the program accesses one of these variables, 

 

test::

 

 must precede the variable name.
Otherwise, a compiler error will occur.

 

Program J-1

 

// Demonstrates a simple namespace
#include <iostream>
using namespace std;

namespace test
{

int x, y, z;
}

int main()
{

test::x = 10;
test::y = 20;
test::z = 30;
cout << "The values are:\n";
cout << test::x << " " << test::y 

  << " " << test::z << endl;
return 0;

}

 

Program Output

 

The values are:
10 20 30

 

Z10_GADD0929_07_SE_APPJ.fm  Page 2  Friday, August 2, 2013  10:27 AM



 

Defining a Namespace

 

J-3

 

Program J-2 demonstrates how programmers can use namespaces to resolve naming
conflicts. The program defines two namespaces, 

 

test1

 

 and 

 

test2

 

. Both namespaces have
variables named 

 

x

 

, 

 

y

 

, and 

 

z

 

 as members.

An alternative approach to qualifying the names of namespace members is to use the

 

using namespace

 

 statement. This statement tells the compiler which namespace to search
for an identifier, when the identifier cannot be found in the current scope. Program J-3
demonstrates the statement.

 

Program J-2

 

// Demonstrates two namespaces
#include <iostream>
using namespace std;

namespace test1
{

int x, y, z;
}

namespace test2
{

int x, y, z;
}

int main()
{

test1::x = 10;
test1::y = 20;
test1::z = 30;
cout << "The test1 values are:\n";
cout << test1::x << " " << test1::y 

 << " " << test1::z << endl;
test2::x = 1;
test2::y = 2;
test2::z = 3;
cout << "The test2 values are:\n";
cout << test2::x << " " << test2::y 

 << " " << test2::z << endl;
return 0;

}

 

Program Output

 

The test1 values are:
10 20 30
The test2 values are:
1 2 3

 

Z10_GADD0929_07_SE_APPJ.fm  Page 3  Friday, August 2, 2013  10:27 AM



 

J-4

 

Appendix J Namespaces

 

The 

 

using namespace demo; 

 

statement eliminates the need to precede 

 

testObject

 

 with

 

demo::

 

. The compiler automatically uses the namespace demo to find the identifier.

 

Program J-3

 

Contents of 

 

nsdemo.h
// This file defines a namespace
// named demo. In the demo namespace
// a class named NsDemo is declared,
// and an instance of the class named
// testObject is defined.

namespace demo
{

class NsDemo
{
public:

int x, y, z;
};

NsDemo testObject;
}

 

Contents of Main File, 

 

PrJ-3.cpp
// This program demonstrates the 
// using namespace statement.
#include <iostream>
#include "nsdemo.h"
using namespace std;

using namespace demo;

int main()
{

testObject.x = 10;
testObject.y = 20;
testObject.z = 30;
cout << "The values are:\n"
     << testObject.x << " "
     << testObject.y << " "
     << testObject.z << endl;
return 0;

}

 

Program Output

 

The values are:
10 20 30

 

Z10_GADD0929_07_SE_APPJ.fm  Page 4  Friday, August 2, 2013  10:27 AM



 

ANSI C++ and the 

 

std

 

 Namespace

 

J-5

 

ANSI C++ and the 

 

std

 

 Namespace

 

All the identifiers in the ANSI standard header files are part of the 

 

std

 

 namespace. In ANSI
C++, 

 

cin

 

 and 

 

cout

 

 are written as 

 

std::cin

 

 and 

 

std::cout

 

. If you do not wish to specify

 

std::

 

 with 

 

cin

 

 or 

 

cout

 

 (or any of the ANSI standard identifiers), you must write the
following statement in your program:

 

using namespace std;

 

Z10_GADD0929_07_SE_APPJ.fm  Page 5  Friday, August 2, 2013  10:27 AM


