

E-1

A
P

P
E

N
D

IX

E

A Brief Introduction to Object-
Oriented Programming

What exactly is object-oriented programming? And what is meant by an object-oriented
system? To answer this, let’s first look at the programming paradigm that preceded it.

Procedural Programming

Until the mid 1990s most computer programs developed were

procedural programs

.
These are programs designed as a set of procedures, or functions, for carrying out the
various tasks that together provide the functionality of the program. Each procedure is
made up of programming language statements that are executed by the computer, one
after the other, to handle one of the tasks the program must carry out. The statements
might gather input from the user, manipulate data stored in the computer’s memory,
perform calculations, or do any other operation necessary to complete a task. For
example, suppose we want the computer to calculate someone’s gross pay. Here is a list
of things the computer should do:

1. Display a message on the screen asking “How many hours did you work?”
2. Accept a number input by the user and store it in memory.
3. Display a message on the screen asking “How much do you get paid per hour?”
4. Accept a second number input by the user and store it in memory.
5. Once both numbers are entered, multiply them and store the result in memory.
6. Display a message on the screen that tells the amount of money earned. The message

must include the result of the calculation performed in step 5.

If the algorithm’s six steps are performed in order, one after the other, it will succeed in
calculating and displaying the user’s gross pay.

Procedural programming was the standard back when users interacted with text-based
computer terminals. For example, Figure E-1 illustrates the screen of an older MS-DOS
computer running a program that performs the pay-calculating algorithm. The numbers
the user entered are shown in bold.

Z05_GADD0929_07_SE_APPE.fm Page 1 Saturday, August 3, 2013 2:27 PM

E-2

Appendix E A Brief Introduction to Object-Oriented Programming

In text-based environments using procedural programs, the user responds to prompts
from the program. Modern operating systems, however, such as Windows, use a
graphical user interface, or GUI (pronounced “gooey”). Although GUIs have made
programs friendlier and easier to use, they have not simplified the task of programming.
In fact, in some ways they have made more work for the programmer. GUIs make it
necessary for the programmer to create a variety of on-screen elements such as
windows, dialog boxes, buttons, menus, and other items that provide an interface
through which the user can interact with the program. Furthermore, the programmer
must write statements that handle the user’s interactions with these on-screen elements,
in any order they might occur. Instead of the user responding to the program, the
program responds to the user. The need to manage these types of things has helped
influence the shift from procedural programming to object-oriented programming.

Object-Oriented Programming

Whereas procedural programming is centered on creating procedures, object-oriented
programming is centered on creating objects. An

object

 is a programming entity that
normally models some real-world entity, such as a student, a bank account, or even a
computer screen. The object

knows

 certain things about itself and can

do

 certain things.
The things it knows are called its

attributes

 and are “remembered” by storing them as
data. The things it can do are called its

methods

 and consist of the actions, or behaviors,
it can carry out with its functions. The object is, conceptually, a self-contained unit
consisting of data (attributes) and functions (methods).

Object-oriented programming (OOP) has revolutionized GUI software development. For
instance, in a GUI environment, the pay-calculating program might appear as the window
shown in Figure E-2.

Figure E-1

 How many hours did you work?

10

 How much are you paid per hour?

15

 You have earned $150.00
 C>_

Figure E-2

Z05_GADD0929_07_SE_APPE.fm Page 2 Saturday, August 3, 2013 2:27 PM

A Brief Introduction to Object-Oriented Programming

E-3

This window can be thought of as an object. It contains other objects as well, such as
text input boxes, and command buttons. Each object has attributes that determine its
appearance. For example, look at the command buttons. One has the caption “Calculate
Gross Pay” and the other reads “Close”. These captions, as well as the buttons’ sizes and
positions, are attributes of the command button objects. Objects can also hold data
entered by the user. For example, one of the text input boxes allows the user to enter the
number of hours worked. When this data is entered, it is stored as an attribute of the text
input box.

The objects also have actions, or methods. For example, when the user clicks the
“Calculate Gross Pay” button with the mouse, the program will display the amount of
gross pay. A method, or function, associated with the button object labeled “Calculate
Gross Pay” performs this action.

The Benefits of Object-Oriented Programming

The complexity of GUI software development was not the first difficult challenge that
procedural programmers faced. Long before Windows and other GUIs, programmers
were wrestling with the problems of code/data separation. In procedural programming,
there is a distinct separation between data and program code. Data is kept in variables of
specific data types, as well as programmer-defined data structures. The program code
passes the data to modules designed to receive and manipulate it. But, what happens
when a program’s specifications change, resulting in redesigned data structures, changed
data types, and new variables being added to the program? In a procedural program
when the structure of the data changes, the modules that operate on it must also be
changed to accept the new format. This results in added work for programmers and
creates an opportunity for bugs to appear in the code.

Object-oriented programming (OOP) addresses the problem of code/data separation through
encapsulation and data hiding.

Encapsulation

 refers to bundling together data and the
procedures that work with it into a single object.

Data hiding

 refers to an object’s ability
to hide data storage details from programs that use the object. Code outside the object
can only access the data by calling the object’s methods. These methods, or procedures,
provide an interface through which external programs access the data stored in the
object. The programs do not need to know anything about how the data is stored. They
only need to know how to interact with the object’s methods. If a programmer needs to
change the type or structure of an object’s internal data, the procedures that provide the
interface between the object’s data and the external programs using it are changed at the
same time. But nothing changes from the external program’s point of view; it accesses
the data as it did before. This is illustrated in Figure E-3.

Z05_GADD0929_07_SE_APPE.fm Page 3 Saturday, August 3, 2013 2:27 PM

E-4

Appendix E A Brief Introduction to Object-Oriented Programming

Component Reusability

Another trend in software development that has encouraged the use of OOP is

component

reusability

. A component is a software object that performs a specific, well-
defined operation or that provides a particular service. The component is not a stand-
alone program, but rather an object that can be used by programs that need the
component’s service. For example, Sharon is a programmer who has developed a
component for rendering 3D images. She is a math whiz and knows a lot about
computer graphics, so her component is coded to perform all the necessary 3D
mathematical operations and handle the computer’s video hardware. Tom, who is
writing a program for an architectural firm, needs his application to display 3D images
of buildings. To save time and work, he can use Sharon’s component to perform the 3D
rendering.

An Everyday Example of an Object

Think of a simple digital alarm clock as an object. It has the following attributes:

•

hour

 (a value in the range of 1–12)

•

minute

 (a value in the range of 0–59)

•

second

 (a value in the range of 0–59)

•

day/night

indicator

 (a.m. or p.m.)

•

alarm set time

(a valid hour, minute, and day/night indicator)

•

alarm status

 (off or on)

As you can see, the attributes are merely data values that define the alarm clock’s

state

.
Table E-1 lists the alarm clock’s methods. These are the actions the clock performs.

Figure E-3

Program that
uses the object

Old data storage
implementation

New data storage
implementation

Unchanged
interface
front end

An object

Old
interface
back end

New
interface
back end

Z05_GADD0929_07_SE_APPE.fm Page 4 Saturday, August 3, 2013 2:27 PM

A Brief Introduction to Object-Oriented Programming

E-5

The methods described in Table E-1 are part of the alarm clock object’s private, internal
workings. External entities (such as yourself) do not have direct access to the alarm
clock’s attributes, but these methods do. The object is designed to execute these methods
automatically and hide the details from you, the user. These methods, along with the
object’s attributes, are part of the alarm clock’s

private

persona.

Some of the alarm clock’s methods are publicly available to you, however. In particular
you can cause the “Set current time”, Set alarm time”, “Turn alarm on” and “Turn
alarm off” methods to execute. You do this by pressing various buttons and moving
various switches that have been provided as part of the public

interface

 to allow external
entities to interact with the object.

Classes and Objects

A class is a type, or category, of object. It specifies the attributes and methods that
objects of that class possess. A class is not an object, however. It simply describes what
objects of the class will look like when they are created. The objects themselves are
instances of the class, and once a class has been defined, multiple instances (objects) can
be created from it. Let’s use our alarm clock example to explore this idea further.

Table E-1

Method When Performed Action

Increment second Every second Adds 1 to value of the

second

 attribute.
If value was 59, value becomes 0.

Increment minute

second

 changes from 59
to 0

Adds 1 to value of the

minute

 attribute.
If value was 59, value becomes 0.
Activates “Check alarm time” method.

Increment hour

minute

 changes from 59
to 0

Adds 1 to value of the

hour

 attribute.
If value was 12, value becomes 1.

Change am/pm indicator

hour

 changes from 11 to 12 Changes indicator status.

Set current time User presses

set time
button

Changes

hour, minute,

 and

am/pm

 to
values set by the user.

Set alarm time User presses

set alarm
button

Changes

alarm set time

 to values set by
the user.

Check alarm time Activated by “Increment
minute” method

Checks if current time =

alarm set time

and

alarm status

 is on. If so, activates
“Sound alarm” method.

Turn alarm on User moves

alarm enable
switch

 to on position
Sets

alarm status

 to on.

Sound alarm Activated by “Check alarm
time” method

Sounds the alarm until “Turn alarm
off” method is activated.

Turn alarm off User moves

alarm enable
switch

 to off position
Sets

alarm status

 to off.

Z05_GADD0929_07_SE_APPE.fm Page 5 Saturday, August 3, 2013 2:27 PM

E-6

Appendix E A Brief Introduction to Object-Oriented Programming

Before an alarm clock can be produced it must be designed. What will it look like? What
kinds of internal components will it have and how will they be controlled? What will the
interface consist of? After the design is compete, the actual machinery must be put in
place to assemble it. Once this has been done, multiple clocks can be produced with the
same equipment based on the same design.

Now let’s look at a software example. Jessica is a computer programmer who has a
butterfly garden and studies butterflies as a hobby. She decides to create a program to
help her catalog information on butterflies.

Before writing the actual program, however, she designs a

Butterfly

 class, which
specifies the attributes (variables) and methods that will be useful to hold and
manipulate data common to all butterflies. After she creates the class, she writes the
program. The program creates and uses many different

Butterfly

 objects. Each one has
a different name, such as

monarch

,

hollyBlue

,

swallowTail

, etc. However, they are all
instances of a

Butterfly

.

Object-Oriented Systems

Component reusability and object-oriented programming technology set the stage for
large-scale computer applications to become entire systems of unique collaborating
entities (components). As you continue through this book you will become more familiar
with writing object-oriented programs. You will also learn how to effectively use existing
components, how to create new components, and how to make components work
together to create entire object-oriented systems.

Z05_GADD0929_07_SE_APPE.fm Page 6 Saturday, August 3, 2013 2:27 PM

