
Basic Input/Output

The example programs of the previous sections provided little interaction with the user, if any at

all. They simply printed simple values on screen, but the standard library provides many

additional ways to interact with the user via its input/output features. This section will present a

short introduction to some of the most useful.

C++ uses a convenient abstraction called streams to perform input and output operations in

sequential media such as the screen, the keyboard or a file. A stream is an entity where a

program can either insert or extract characters to/from. There is no need to know details about

the media associated to the stream or any of its internal specifications. All we need to know is

that streams are a source/destination of characters, and that these characters are

provided/accepted sequentially (i.e., one after another).

The standard library defines a handful of stream objects that can be used to access what are

considered the standard sources and destinations of characters by the environment where the

program runs:

stream description

cin standard input stream

cout standard output stream

cerr standard error (output) stream

clog standard logging (output) stream

We are going to see in more detail only cout and cin (the standard output and input streams);

cerr and clog are also output streams, so they essentially work like cout, with the only

difference being that they identify streams for specific purposes: error messages and logging;

which, in many cases, in most environment setups, they actually do the exact same thing: they

print on screen, although they can also be individually redirected.

Standard output (cout)

On most program environments, the standard output by default is the screen, and the C++ stream

object defined to access it is cout.

For formatted output operations, cout is used together with the insertion operator, which is

written as << (i.e., two "less than" signs).

1

2

3

cout << "Output sentence"; // prints Output sentence on screen

cout << 120; // prints number 120 on screen

cout << x; // prints the value of x on screen

The << operator inserts the data that follows it into the stream that precedes it. In the examples

above, it inserted the literal string Output sentence, the number 120, and the value of variable

x into the standard output stream cout. Notice that the sentence in the first statement is enclosed

in double quotes (") because it is a string literal, while in the last one, x is not. The double

quoting is what makes the difference; when the text is enclosed between them, the text is printed

literally; when they are not, the text is interpreted as the identifier of a variable, and its value is

printed instead. For example, these two sentences have very different results:

1

2

cout << "Hello"; // prints Hello

cout << Hello; // prints the content of variable Hello

Multiple insertion operations (<<) may be chained in a single statement:

 cout << "This " << " is a " << "single C++ statement";

This last statement would print the text This is a single C++ statement. Chaining

insertions is especially useful to mix literals and variables in a single statement:

 cout << "I am " << age << " years old and my zipcode is " << zipcode;

Assuming the age variable contains the value 24 and the zipcode variable contains 90064, the

output of the previous statement would be:

I am 24 years old and my zipcode is 90064
What cout does not do automatically is add line breaks at the end, unless instructed to do so. For

example, take the following two statements inserting into cout:

cout << "This is a sentence.";

cout << "This is another sentence.";

The output would be in a single line, without any line breaks in between. Something like:

This is a sentence.This is another sentence.
To insert a line break, a new-line character shall be inserted at the exact position the line should

be broken. In C++, a new-line character can be specified as \n (i.e., a backslash character

followed by a lowercase n). For example:

1

2

cout << "First sentence.\n";

cout << "Second sentence.\nThird sentence.";

This produces the following output:

First sentence.

Second sentence.

Third sentence.

Alternatively, the endl manipulator can also be used to break lines. For example:

1

2

cout << "First sentence." << endl;

cout << "Second sentence." << endl;

This would print:

First sentence.

Second sentence.

The endl manipulator produces a newline character, exactly as the insertion of '\n' does; but it

also has an additional behavior: the stream's buffer (if any) is flushed, which means that the

output is requested to be physically written to the device, if it wasn't already. This affects mainly

fully buffered streams, and cout is (generally) not a fully buffered stream. Still, it is generally a

good idea to use endl only when flushing the stream would be a feature and '\n' when it would

not. Bear in mind that a flushing operation incurs a certain overhead, and on some devices it may

produce a delay.

Standard input (cin)

In most program environments, the standard input by default is the keyboard, and the C++

stream object defined to access it is cin.

For formatted input operations, cin is used together with the extraction operator, which is

written as >> (i.e., two "greater than" signs). This operator is then followed by the variable where

the extracted data is stored. For example:

1

2

int age;

cin >> age;

The first statement declares a variable of type int called age, and the second extracts from cin a

value to be stored in it. This operation makes the program wait for input from cin; generally, this

means that the program will wait for the user to enter some sequence with the keyboard. In this

case, note that the characters introduced using the keyboard are only transmitted to the program

when the ENTER (or RETURN) key is pressed. Once the statement with the extraction operation on

cin is reached, the program will wait for as long as needed until some input is introduced.

The extraction operation on cin uses the type of the variable after the >> operator to determine

how it interprets the characters read from the input; if it is an integer, the format expected is a

series of digits, if a string a sequence of characters, etc.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

// i/o example

#include <iostream>

using namespace std;

int main ()

{

 int i;

 cout << "Please enter an integer

value: ";

 cin >> i;

 cout << "The value you entered is

" << i;

 cout << " and its double is " <<

i*2 << ".\n";

 return 0;

}

Please enter an integer value: 702

The value you entered is 702 and its

double is 1404.

As you can see, extracting from cin seems to make the task of getting input from the standard

input pretty simple and straightforward. But this method also has a big drawback. What happens

in the example above if the user enters something else that cannot be interpreted as an integer?

Well, in this case, the extraction operation fails. And this, by default, lets the program continue

without setting a value for variable i, producing undetermined results if the value of i is used

later.

This is very poor program behavior. Most programs are expected to behave in an expected

manner no matter what the user types, handling invalid values appropriately. Only very simple

programs should rely on values extracted directly from cin without further checking. A little

later we will see how stringstreams can be used to have better control over user input.

Extractions on cin can also be chained to request more than one datum in a single statement:

 cin >> a >> b;

This is equivalent to:

1

2

cin >> a;

cin >> b;

In both cases, the user is expected to introduce two values, one for variable a, and another for

variable b. Any kind of space is used to separate two consecutive input operations; this may

either be a space, a tab, or a new-line character.

cin and strings

The extraction operator can be used on cin to get strings of characters in the same way as with

fundamental data types:

1

2

string mystring;

cin >> mystring;

However, cin extraction always considers spaces (whitespaces, tabs, new-line...) as terminating

the value being extracted, and thus extracting a string means to always extract a single word, not

a phrase or an entire sentence.

To get an entire line from cin, there exists a function, called getline, that takes the stream

(cin) as first argument, and the string variable as second. For example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

// cin with strings

#include <iostream>

#include <string>

using namespace std;

int main ()

{

 string mystr;

 cout << "What's your name? ";

 getline (cin, mystr);

 cout << "Hello " << mystr <<

".\n";

 cout << "What is your favorite

team? ";

 getline (cin, mystr);

 cout << "I like " << mystr << "

too!\n";

 return 0;

}

What's your name? Homer Simpson

Hello Homer Simpson.

What is your favorite team? The

Isotopes

I like The Isotopes too!

Edit &

Run

Notice how in both calls to getline, we used the same string identifier (mystr). What the

program does in the second call is simply replace the previous content with the new one that is

introduced.

The standard behavior that most users expect from a console program is that each time the

program queries the user for input, the user introduces the field, and then presses ENTER (or

RETURN). That is to say, input is generally expected to happen in terms of lines on console

programs, and this can be achieved by using getline to obtain input from the user. Therefore,

unless you have a strong reason not to, you should always use getline to get input in your

console programs instead of extracting from cin.

http://www.cplusplus.com/doc/tutorial/basic_io/
http://www.cplusplus.com/doc/tutorial/basic_io/

stringstream

The standard header <sstream> defines a type called stringstream that allows a string to be

treated as a stream, and thus allowing extraction or insertion operations from/to strings in the

same way as they are performed on cin and cout. This feature is most useful to convert strings

to numerical values and vice versa. For example, in order to extract an integer from a string we

can write:

1

2

3

string mystr ("1204");

int myint;

stringstream(mystr) >> myint;

This declares a string with initialized to a value of "1204", and a variable of type int. Then,

the third line uses this variable to extract from a stringstream constructed from the string. This

piece of code stores the numerical value 1204 in the variable called myint.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

// stringstreams

#include <iostream>

#include <string>

#include <sstream>

using namespace std;

int main ()

{

 string mystr;

 float price=0;

 int quantity=0;

 cout << "Enter price: ";

 getline (cin,mystr);

 stringstream(mystr) >> price;

 cout << "Enter quantity: ";

 getline (cin,mystr);

 stringstream(mystr) >> quantity;

 cout << "Total price: " << price*quantity <<

endl;

 return 0;

}

Enter price:

22.25

Enter quantity: 7

Total price:

155.75

Edit &

Run

In this example, we acquire numeric values from the standard input indirectly: Instead of

extracting numeric values directly from cin, we get lines from it into a string object (mystr), and

then we extract the values from this string into the variables price and quantity. Once these

are numerical values, arithmetic operations can be performed on them, such as multiplying them

to obtain a total price.

With this approach of getting entire lines and extracting their contents, we separate the process of

getting user input from its interpretation as data, allowing the input process to be what the user

http://www.cplusplus.com/%3Csstream%3E
http://www.cplusplus.com/stringstream
http://www.cplusplus.com/doc/tutorial/basic_io/
http://www.cplusplus.com/doc/tutorial/basic_io/

expects, and at the same time gaining more control over the transformation of its content into

useful data by the program.

