
TM: A text-based, object-oriented, Turing machine

simulator

R. Matthew Kretchmar
Department of Mathematics and Computer Science

Denison University
Granville, OH 43023

kretchmar@denison.edu

Abstract

TM implements various facets of a Turing machine. The syntax for
our Turing machine follows the convention adopted in Elements of the
Theory of Computation, 2nd Ed. by Harry R. Lewis and Christos H.
Papadimitriou. TM consists of a basic executable for simulating simple
Turing machines, a template option to extend the flexibility of generic
Turing machines, and a development environment for combining simple
Turing machines into more complex Turing Machines.

1 Overview

There are seven parts to this document:

1. Where to obtain the simulator

2. Turing machine syntax

3. Tape syntax

4. The basic tm executable

5. The tm preprocessor

6. The tm development environment

7. Examples and notes

1

This document assumes the reader is familiar with the basic operation
of Turing machines. For introductory information on Turing machines, read
the Lewis and Papadimitriou text or any one of the other numerous texts
on Theory of Computation and/or Formal Automata.

While the generic notion of a Turing machine is universal, there are
various alternatives in specifying the syntax and operation of a Turing ma-
chines. The reader might wish to examine the Lewis and Papadimitriou text
for the specific Turing machine syntax supported by this simulator. How-
ever, enough of the details of our syntax convention should be given by this
document so that it is self-supporting.

2 Obtaining the Simulator

Load the following URL into your browser and follow the directions on this
web page.

http://www.denison.edu/~kretchmar/tm/

3 The Turing machine syntax

In this section we introduce the specific syntax for our Turing machine.
A Turing machine is a quintuple M = (K, Σ, s, H, δ) where:

K is a finite set of states

Σ the alphabet, is a finite set of symbols

s is the start state (s ∈ K)

H is the finite set of halting states (H ⊂ K)

δ is the transition function where each member of δ is of the form (s, a, (t, b))
where s is the current state, a ∈ Σ is the currently scanned tape
symbol, t is the next state, and b is either a symbol to write to the
tape or a movement action (left, right).

The following is an example of a Turing machine configuration file for
Lt which is a Turing machine that seeks the first blank to the left of the
current head:

2

#L_.ab: scans to the left to find the first blank symbol
to the left of the current head position.

(
{A,B,h},
{a,b,_,^},
A,
{h},
{ (A,a,(B,<)),
(A,b,(B,<)),
(A,_,(B,<)),
(A,^,(B,>)),
(B,a,(B,<)),
(B,b,(B,<)),
(B,_,(h,_)),
(B,^,(B,>)) }

)
Let us examine the different parts of this file. First, we note that the

entire configuration is enclosed in parenthesis () with five parts within to
denote M as a quintuple. The first part is a set, K, given in braces. The
second part is a set, Σ, again in braces. The third part is the start state, s.
The fourth part is a set, H, of halting states. The final part is a set, δ, for
the transition function. This syntax for specifying a Turing machine must
be followed exactly; any deviation will be reported as an error. Whitespaces
are allowed to be inserted anywhere in the configuration. Also, comments
begin with a # so that the remainder of the line is ignored.

Let us look at the rules for each part:
K

Valid states are single characters. All characters are valid except the re-
served characters of { } , ˆ < > * and whitespaces. However, it is
recommended that uppercase letters be used to denote states so that the
symbols are not confused with the alphabet. The same symbol cannot be
repeated in the set (sets are not allowed to contain duplicate items).

Σ
Valid symbols for the alphabet are single characters except for { } , < > *
and whitespaces. When specifying an alphabet, two symbols must be in-
cluded: the left-end of tape symbol ˆ, and the blank symbol . It is an error
to duplicate the same character in the alphabet set. To avoid unnecessary
confusion, it is discouraged to use alphabet symbols that are also states

3

although this is legal.
s

The start symbol must be a member of the start state K.
H

The set of halting states must be a subset of K.
δ

The transition function δ is a set of ordered triples. Here are the different
parts of each ordered triple (s, a, (t, b)):

• a state from s ∈ K −H

• a symbol from a inΣ

• an ordered pair (t, b) where

– t ∈ K

– b ∈ (Σ ∪ {<,>})

All rules for δ of the form (s, a, (t, b)) must also meet the following con-
ditions:

• b 6= ˆ because it is illegal to write the left-end of tape symbol.

• if a = t̂hen b => because we must always make a right-move when
encountering the left-end of tape.

• It is illegal to duplicate a rule (cannot have multiple rules with the
same s and a) because δ is a function.

• It is illegal to omit a rule for some s ∈ K−H and some a ∈ Σ because
δ is a function and must be fully specified.

4 Tape syntax

Here is are some example tapes:
ˆ aaaaaaa
ˆ aaa aa*b

Tapes must meet the following conditions:

• Valid tape characters are restricted to members of the alphabet.

4

• The left-end of tape symbol, ˆ , must always be the first symbol and
can never be anywhere else in the tape.

• The * is optional and is used to denote the position of the Turing
machine scan head. If unspecified, the head will assume to be at the
left-end symbol.

• Tapes cannot contain any whitespaces within.

• Tapes are assumed to contain infinite blanks to the right even though
the extra blanks have not been explicitly specified.

5 The basic tm executable

From the command line, execute the command tm to run the Turing machine
simulator. The simulator reads two things from stdin:

1. A specification for a Turing machine

2. Multiple tapes

If the Turing machine specification is invalid, the program halts. If the
specification is valid, the Turing machine then scans each tape and performs
a computation on each tape. If any of the tapes are invalid (either in syntax
or during execution) the Turing machine halts processing on that tape and
then proceeds to the next tape.

From the unix prompt, it is natural to use concatenation, file redirection,
and pipes to execute the machine. Let’s assume we have the following two
files:

L .ab

5

#L_.ab: scans to the left to find the first blank symbol
to the left of the current head position.

(
{A,B,h},
{a,b,_,^},
A,
{h},
{ (A,a,(B,<)),
(A,b,(B,<)),
(A,_,(B,<)),
(A,^,(B,>)),
(B,a,(B,<)),
(B,b,(B,<)),
(B,_,(h,_)),
(B,^,(B,>)) }

)
tmblank tapes

^___aaaa*aaa
^_*_aaa
File L .ab contains the specification for the Turing machine which moves

to find the first blank to the left of the head. File tmblank tapes contains
two test tapes. We run the following command:

cat L_.ab tmblank_tapes | tm >output

The contents of the file output now contains the following:

output

6

ret = 0
M = (K,S,s,H,d)

K = { A, B, h }
S = { a, b, _, ^ }
s = A
H = { h }
d = A a -> (B,<)

A b -> (B,<)
A _ -> (B,<)
A ^ -> (B,>)
B a -> (B,<)
B b -> (B,<)
B _ -> (h,_)
B ^ -> (B,>)

Turing Machine Starting Execution!

Computing on tape: ^___aaaa*aaa_
(A,^___aaaa*aaa_)
(B,^___aaa*aaaa_)
(B,^___aa*aaaaa_)
(B,^___a*aaaaaa_)
(B,^___*aaaaaaa_)
(h,^___*aaaaaaa_)

Computing on tape: ^_*_aaa_
(A,^_*_aaa_)
(B,^*__aaa_)
(B,^_*_aaa_)
(h,^_*_aaa_)

The tm command first scans the Turing machine configuration and then
prints it to the screen. Then tm simulates this Turing machine on each of
the input tapes. It shows the entire computation sequence for each tape.

7

6 The tm preprocessor

Consider these two simple Turing machines:

L.ab

#L.ab moves one square to the left and halts
(
{ A, h },
{ a, b, ^, _ },
A,
{ h },
{ (A,a,(h,<)),

(A,b,(h,<)),
(A,_,(h,<)),
(A,^,(A,>))}

)
L.01

#L.01 moves one square to the left and halts
(
{ A, h },
{ 0, 1, ^, _ },
A,
{ h },
{ (A,0,(h,<)),

(A,1,(h,<)),
(A,_,(h,<)),
(A,^,(A,>))}

)
These two machines perform exactly the same task: move one square to

the left and then halt. The first machine operates on an alphabet of {a, b}
while the second machine operates on the binary alphabet, {0, 1}. It seems
redundant to store both these machines and other machines that simply
move one square left for different alphabets. Thus, we introduce a Turing
machine template:

L.i

8

#L.i moves one square to the left and halts
(
{ A, h },
{ *, ^, _ },
A,
{ h },
{ (A,*,(h,<)),

(A,_,(h,<)),
(A,^,(A,>))}

)
Notice that this machine is exactly the same as the previous ones except

that it’s alphabet is limited to an asterisk. The * is a wildcard that is used
to instantiate a template with a specific alphabet.

There is a preprocessor called instantiate which reads from stdin (i) a
specific alphabet and (ii) a Turing machine template, and then instantiates
that template with the specified alphabet; it prints the instantiated Turing
machine to stdout.

Notice that the template must still contain ˆ and and that the specific
alphabets cannot contain these elements. It is helpful to create a file for
each standard alphabet. We have created two files:
alphabet.ab: {a, b}

alphabet.01: {0, 1}
which both conform to the standard alphabet syntax and rules (except that
they contain no ˆ nor .

We then use the following commands to create L.ab and L.01

cat alphabet.ab L.i | instantiate > L.ab
cat alphabet.01 L.i | instantiate > L.01

You can also specify wildcards as the next symbol. Here is the template
for Ln (move left to find the first non-blank to the left of the head):

Ln .i

9

#Ln_.i: scans to find the first non-blank symbol to the
left of the current head position.
(
{A,B,h},
{*,_,^},
A,
{h},
{ (A,*,(B,<)),
(A,_,(B,<)),
(A,^,(B,>)),
(B,*,(h,*)),
(B,_,(B,<)),
(B,^,(B,>)) }

)
The power of this feature is limited. It is only possible to use templates

if all the members of the alphabet will have the same rules; yet, it does help
to reduce the redundant storage of simple Turing machines for different
alphabets.

7 The tm development environment

Simple Turing machines get to be large and unmanageable Turing machines
without adding too much more complexity; it can be difficult and burden-
some to debug a machine which seems “simple” in principle but can be large
and complex in the formal syntax. To overcome this problem, Lewis and
Papadimitriou have introduced a short-hand notation for combining simple
Turing machines into more complex machines.

The basic idea is to accumulate a library of useful simple Turing machines
specified in formal syntax. Such machines include move left, move right,
move left to first blank, write an “a”, and so on. It is not hard to construct
a library of these simple machines.

Then we create an input tape. The tape “object” is then handed off to
a series of these simple Turing machines each of which performs some ma-
nipulations on the tape. When one machine halts, the execution thread and
the tape are passed along to the next machine. In this way, we can “pro-
gram” some rather complex Turing machine behavior by combining simple
machines. We have implemented this same feature in our TM simulator.

In order to use this feature, you will have to write a small C++ program
and compile/link with the tm simulator code. Fortunately, there are only a

10

handful of routines that you must call to implement this feature; building
large Turing machines is rather intuitive in this development environment.

On page 190 of the Lewis and Papadimitriou text is the short-hand
notation for the copy Turing machine. This machine will take the string
just to the right of the head and make a duplicate copy of the string to the
far right.

Here is roughly the diagram from the text:

R a2a=

a=

R 2L a

This machine first moves one square to the right. Then, if the next
character is not a blank (store this character in the variable a, write a
blank, move to the right to find the first blank (twice), write the symbol in
the variable a, move the left to the first blank (twice), write the symbol in
a again, then move to the right and repeat.

This copy machine uses several simple machines including: R: move one
square to the right, t: write a blank, Rt: move the right to find the first
blank to the right of the head, and so forth. We have already built these
simple machines by specifying their operation using the formal syntax of
Section 1. Now we combine them into a single machine. Here is the C++
file that implements the copy machine:

simple.cc

11

#include <stdio.h>
#include "tape.h"
#define TM(s) if ((ret = tp->scan_tm(s)) != 0) return ret; else
#define READ tp->read()
//==
int copy (tape *tp);
//==
int main (int argc, char *argv[])
{

int ret;
tape tp;

ret = tp.scan();
tp.print();
printf("\n");

ret = copy(&tp);
return 0;

}
//==
int copy (tape *tp)
{

int c;
int ret;

TM("R.01");
while ((c = READ) != ’_’)
{

TM("W_.01");
TM("R_.01"); TM("R_.01");

if (c == ’0’) TM("W0.01");
else TM("W1.01");

TM("L_.01"); TM("L_.01");

if (c == ’0’) TM("W0.01");
else TM("W1.01");

TM("R.01");
}
TM("L_.01");
return 0;

}

12

Here we have enclosed the entire copy machine into one subroutine called
copy. We pass a tape pointer into this routine and the routine will copy the
string on the tape. There are a few key features used in this file:

• We must include “tape.h” so that the tape object can be implemented.

• We call

tp->scan()

to scan the input tape from stdin.

• We call

tp->print()

to print the scanned tape to stdout.

• We make repeated calls to

tp->scan_tm(‘‘tmstring’’)

where “tmstring” is the name of a file which contains the specification
for a simple Turing machine. By making this call, we load the Turing
machine and then execute the Turing machine on the current tape
configuration. Notice that the Turing machine head is denoted by a *
on the tape and hence the “head position” travels with the tape object
and not each individual Turing machine object.

Notice the use of macros (defined at the top) to simplify the calling
mechanisms for loading Turing machines from file and for reading the sym-
bol currently under the head. Using these macros presupposes that your
subroutine has an int named ret and a pointer to the tape named tp.

After creating simple.cc we build the unit with: make. You may have to
adjust the makefile if you want to call your source file something other than
simple.cc.

We then execute the machine as:

simple <tape1 >out

13

where tape1 is a file that holds the desired input tape and out holds the
output of the program computation. The output will show the syntax for
each machine being loaded and then will show the transitions each machine
makes on the tape – it is a lengthy output file.

The out file from above is not shown here (it is 900 lines long) but can
be found on the website.

8 Examples and notes

There is a website for this simulator at:

www.denison.edu/~kretchmar/tm/

At this website, you can find the following:

tm The basic executable for the formal Turing machine syntax.

instantiate The template preprocessor.

tm.ps This document.

tm.tar.Z The makefile, object files, and some source files. These are necessary
for the development environment (simple.cc).

stuff.tar.Z A library of simple Turing machines. Each simple machine is a textfile
following the formal notation. Also included are a few tape files and
two alphabet files.

Practical Limitations

Although an idealized Turing machine can have arbitrarily large (but
finite) state sets, alphabets, and transition functions, we must place artificial
limitations on the amount of memory allocated to a tm object. Below is a list
of these restrictions. They can be expanded, if necessary, by modifying the
appropriate #define in the corresponding header file and then recompiling
the executables.

• The tape length limit is set to 100.

• Each set (states, alphabet, ...) is limited to 100 elements.

• The transition function is limited to 500 elements (rules).

• Turing machines halt after a maximum of 100 execution steps – to
prevent infinite loops.

14

