
Reinforcement Learning, Neural Networks and PI Control Applied to a
Heating Coil

Charles W. Anderson1, Douglas C. Hittle2, Alon D. Katz2, and R. Matt Kretchmar1

1Department of Computer Science
Colorado State University
Fort Collins, CO 80523
fanderson,kretchmag@cs.colostate.edu

2Department of Mechanical Engineering
Colorado State University
Fort Collins, CO 80523
fhittle,along@lamar.colostate.edu

Abstract

An accurate simulation of a heating coil is used to compare the performance of a PI controller, a neural
network trained to predict the steady-state output of the PI controller, a neural network trained to minimize
the n-step ahead error between the coil output and the set point, and a reinforcement learning agent trained
to minimize the sum of the squared error over time. Although the PI controller works very well for this
task, the neural networks do result in improved performance.

1 Introduction

Typical methods for designing fixed feedback controllers results in sub-optimal control performance. In
many situations, the degree of uncertainty in the model of the system being controlled limits the utility of
optimal control design. Building energy systems are particularly troublesome since the process gain is highly
variable, depending on the load on components such as heating and cooling coils and on inlet conditions such
as air temperature and air volume flow rate. Some of these issues have been addressed by applying neural
networks and other artificial intelligence techniques to the control of heating and air-conditioning systems
[4, 3, 7].

In this article, three approaches to improving the performance of an ordinary proportional plus integral
controller are explored. One is a feed forward neural network controller designed to bring the controlled
variable to its set point in n sampling intervals (where n is variable). The second is a feed forward neural
network controller in parallel with a proportional feed back controller. In this case the neural network is
trained to produce the steady state value of the control signal required to achieve the set point. The third
uses a procedure for adding a reinforcement-learning component to an existing feedback controller in order
to minimize the sum of the squared error of the control variable over time.

The procedures are empirically tested by applying them to an accurate simulation of a heating coil, a part
a heating system for a building. A proportionalplus integral (PI) controller is applied to the simulated heating
coil and the controller’s proportional and integral gains are set to values that result in the best performance
under likely disturbances and changes in the set point. The coil simulation and PI controller are described
in Section 2. The performance of this well-tuned PI controller in maintaining the set point is the basis of
comparison for three approaches to improving the control using neural networks. Section 3 describes how a
simple inverse model can be used to train a neural-network controller. Section 4 describes a neural network
trained to predict the steady-state output of the PI controller and shows that when combined with a propor-
tional controller, it performed better than the PI controller. In Section 5, an optimal control method based on
reinforcement learning is presented. The reinforcement learning agent learns to augment the output of the
PI controller only when it results in improved performance.

2 Heating Coil Model and PI Control

Underwood and Crawford [9] developed a model of an existing heating coil by fitting a set of second-
order, nonlinear equations to measurements of air and water temperatures and flow rates obtained from the
actual coil. A diagram of the model is shown in Figure 1. The state of the modeled system is defined by
the air and water input and output temperatures, Tai, Tao, Twi, Two, fa, and fw. The control signal, c, in-
put to the model affects the water flow rate. The model is determined by least-squared fit to the data. For
the experiments reported here, the variables Tai, Twi, and fa were modified by random walks to model the

Temp H20 In

Temp H20 Out

Mass Flow
Rate H20

Temp Air In

Mass Flow Air

Duct

Temp Air Out

Heating Coil with Dual Controller

Neural Network

P Controller

Temp Set Point
Other Variables

T
ai

T
wi

fa

T
wo

c

fw

T
ao

Figure 1: The simulated heating coil. Also shown is the control system composed of a feedback controller
and a neural network whose outputs are summed to form the control signal.

disturbances and changing conditions that would occur in actual heating and air conditioning systems. The
bounds on the random walks were 4 � Tai � 10oC, 73 � Twi � 81oC, and 0:7 � fa � 0:9 kg/s.

A PI controller was tuned to control the simulated heating coil. The best proportional and integral gains
were determined by measuring the sum of the absolute value of the difference between the set point and
actual exiting air temperature under a variety of disturbances.

3 Training with a Simple Inverse Model

The most immediate problem that arises when designing a procedure for training a neural-network con-
troller is that a desired output for the network is usually not available. One way to obtain such an error is
to transform the error in the controlled state variable, which is usually a difference from a set point, into a
control-signal error, and use this error to train the network. An inverse model of the controlled system is
needed for this transformation. In addition to an inverse model, one must consider which error in time is to
be minimized. Ideally, a sum of the error over time is minimized. This is addressed in Section 5. Here the
error n steps ahead is minimized.

A neural network was trained to reduce the error in the output air temperature n steps ahead. For the
simulated heating coil, a “step” is five seconds. This is the assumed sampling interval for a digital controller
that implements any of the control schemes tried here. The network was used as an independent controller,
with the output of the network being the control signal. To train an n-step ahead network, a simple inverse
model was assumed: the error of the network’s output at time step t was defined to be proportional to the
difference between the output air temperature and the set point at time t+n. Inputs to the network were Tai,
Tao, Twi, Two, fa, fw, and the set point at time t. The network had these seven inputs, 30 hidden units, and
one output unit. Training data was generated by randomly changing the set point and system disturbances
every 30 time steps.

Neural networks were trained to minimize the error from two to eight steps ahead. All were found to re-
duce the error in comparison to the PI controller by itself. For n = 1, 2, and 3, the RMS error between Tao
and its set point was about 0.6 over a 300-step test sequence. For n = 5 and 6, the error increased to approx-
imately 0.7 and 0.65, respectively. Figure 2 shows a 60-step portion of the test sequence. Smaller values of
n result in more overshoot of the set point. The performance of the PI controller as shown is significantly
damped. Recall that the PI proportional and integral gains were chosen to minimize the RMS error over a
wide variety of disturbances.

0 10 20 30 40 50 60
39

40

41

42

43

Set point

n=1 n=2

n=3 n=4

PI controller

n=5

T
ao

Figure 2: The set point and action output air temperature when controlled with either the PI controller, or a
neural network trained to minimize the n-step ahead error.

4 Prediction of PI Steady-State

The equation for the output from a proportional plus integral controller is:

O = a+ kpet + ki

Z
etdt

where the kp is the proportional gain, ki is the integral gain, et is the error between the measured and set
point values of the controlled variable. A relatively slowly changing offset from the set point can be removed
through integral control, which slowly adjusts the control signal to minimize the offset by adding up changes
to the control signal. To maximize stability, this integration process must be slow, in general, requiring many
time steps to remove the offset. If the steady-state output of an integral controller can be predicted, then the
control output can be set to the predicted value immediately, without waiting for the integral term to ramp
up.

We investigated this possibility by training a neural network to predict the steady-state output of the
PI controller for the heating coil model. Inputs to the neural network were Tai, Twi, fa, and the set point.
The desired output, or target, of the network was determined by allowing the PI controller to control the
heating coil simulation until steady state was reached. A data set of 10,000 input and desired output pairs
was collected. Of this data, 80% was used for training, 10% for cross-validation, and 10% for testing. A
two-layer network with four inputs, a variable number of hidden units, and one output unit was used.

To determine the appropriate number of hidden units, networks containing 1, 2, 3, 4 and 6 hidden units
were trained for 20 epochs using traditional error back-propagation. These results are compared in Figure 3.
After training for 20 epochs, the network’s output for the test data differed from the target value by an av-
erage of 0.7%. Clearly, one hidden unit was sufficient; adding hidden units only increases training time.
The apparent improved training performance of a two-hidden-unit network is due to a fortuitous, random
selection of initial weight values.

This approach of using a neural network to duplicate the steady state output of a PI controller was pro-
posed by Hepworth, Dexter, and Willis [6, 5], who used two inputs (discharge air temperature and inlet air
temperature) to train a network of radial basis functions. In contrast, we used sigmoid neurons and took
advantage of additional measurable variables such as air flow rate, inlet water temperature and water flow
rate. The fact that only one hidden unit was needed to do a good job of modelling the desired steady state
output, suggests that required mapping is fairly linear and that sigmoids may be a better choice than radial
basis functions or other more complex functions for this application. However, we give Hepworth, Dexter,
and Willis full credit for the seed of this idea.

The steady-state, neural network predictor used alone as a controller for the heating coil simulation per-
formed poorly in comparison to the PI controller. This is to be expected, because the short term proportional

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

Epochs

6 Hidden
 Units4 Hidden

 Units
3 Hidden
 Units

1 Hidden
 Unit

2 Hidden Units

Average
Squared

Error

Figure 3: Average squared error versus epochs for various numbers of hidden units.

component is missing. When combined with a proportional controller, whose gain is optimized for this case,
performance was significantly better than the original PI controller’s performance. Figure 4 shows the be-
havior of the exiting air temperature when controlled with PI controller, the neural network alone, and with
the combined neural network and proportional controller. This successful simulation result in not surpris-
ing, since well-behaved physical models are modeled well by statistical methods. However, our approach
is more general than an analytical solution. It can be used for systems for which a model is not well known
and for situations where systems constants need to be determined by regression.

5 Optimal Control with Q-Learning

Reinforcement learning methods embody a general Monte Carlo approach to dynamic programming for
solving optimal control problems. Q-learning procedures converge on value functions for state-action pairs
that estimate the expected sum of future reinforcements, which reflect behavior goals that might involve
costs, errors, or profits.

To define the Q-learning algorithm, we start by representing a system to be controlled as consisting of a
discrete state space, S, and a finite set of actions, A, that can be taken in all states. A policy is defined by the
probability, �(st; a), that action a will be taken in state st. Let the reinforcement resulting from applying
action at while the system is in state st be R(st; at). Q�(st; at) is the value function given state st and
action at, assuming policy � governs action selection from then on. The optimal value of Q�(st; at) is

Q�(st; at) = E�

(
TX
k=0

kR(st+k; at+k)

)
;

where
 is a discount factor between 0 and 1 that weights reinforcement received sooner more heavily than
reinforcement received later. This expression can be rewritten as an immediate reinforcement plus a sum of
future reinforcement:

Q�(st; at) = E�

(
R(st; at) +

TX
k=1

kR(st+k; at+k)

)
;

= E�

(
R(st; at) +

T�1X
k=0

kR(st+k+1; at+k+1)

)
:

In dynamic programming, policy evaluation is conducted by iteratively updating the value function until it
converges on the desired sum. By substituting the estimated value function for the sum in the above equation,
the iterative policy evaluation method from dynamic programming results in the following update to the
current estimate of the value function:

�Q�(st; at) = E� fR(st; at) +
Q�(st+1; at+1)g �Q�(st; at);

0 50 100 150 200 250 300 350 400 450 500
35

40

45

50

T
ao

a. PI Controller

0 50 100 150 200 250 300 350 400 450 500
35

40

45

50

T
ao

b. Neural Network Controller

0 50 100 150 200 250 300 350 400 450 500
35

40

45

50

c. Combined Neural Network and PI Controller

T
ao

Figure 4: Set Point and actual temperature versus time as the system is controlled with a) the PI controller,
b) the neural network, steady-state predictor, and c) the combined neural network predictor and proportional
controller.

0 50 100 150 200 250 300 350 400 450 500
30

40

50

T
ai

0 50 100 150 200 250 300 350 400 450 500
500

1000

1500

c

(control
 signal)

Figure 5: Performance of PI controller. The top graph shows the set point and the actual output air temper-
ature over time. The bottom graph shows the PI output control signal.

where the expectation is taken over possible next states, st+1, given that the current state is st and action at
was taken. This expectation requires a model of state transition probabilities. If such a model does not exist,
a Monte Carlo approach can be used in which the expectation is replaced by a single sample and the value
function is updated by a fraction of the difference.

�Q�(st; at) = � [R(st; at) +
Q�(st+1; at+1)�Q�(st; at)] ;

where 0 � � � 1. The term within brackets is often referred to as a temporal-difference error, defined by
Sutton [8].

To improve the action-selection policy and achieve optimal control, the dynamic programming method
called value iteration can be applied. This method combines steps of policy evaluation with policy improve-
ment. Assuming we want to maximize total reinforcement, as would be the case if reinforcements are posi-
tive, such as profits or proximity to a destination, the Monte Carlo version of value iteration for theQ function
is

�Q�(st; at) = �

�
R(st; at) +
max

a02A
Q�(st+1; a

0)�Q�(st; at)

�
:

This is what has become known as the Q-learning algorithm. Watkins [10] proves that it does converge to
the optimal value function, meaning that selecting the action,a, that maximizesQ(st; a) for any state st will
result in the optimal sum of reinforcement over time.

5.1 Experiment
Reinforcement at time step t is determined by the squared error plus a term proportional to the magnitude

of the action change from one time step to the next. Formally, this reinforcement is calculated by

R(t) = (Tao(t)
� � Tao(t))

2;

where T �

ao is the set point.
Input to the reinforcement-learning agent consist of the variables Tai, Tao, Twi, Two, fa, fw, and the set

point, all at time t. The output of the network is directly added to the integrated output of the PI controller.
The allowed output actions are �100,�50, �20, �10, 0, 10, 20, 50, and 100. The selected action is added
to the PI control signal. The Q function is implemented by the network in a quantized, or table look-up,
method. Each of the seven input variables are divided into six intervals, which quantize the 7-dimensional
input space into 67 hypercubes. In each hypercube is stored the Q values for the nine possible actions. The
parameter � was decreased during training from 0.1 to 0.001

The reinforcement-learning agent is trained repeatedly on 500 time steps of feedback interactions be-
tween the PI controller and the simulated heating coil. Figure 5 shows the set point and actual temperatures
and the control signal over these 500 steps. The RMS error between the set point and actual output air tem-
perature over these 500 steps is 0.89.

0 100 200 300 400 500 600 700 800 900 1000
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Epochs

RMS
Error

Between
 Setpoint
 and Tao

PI Controller RMS Error

Figure 6: Reduction in error with multiple training epochs. The amount of exploration is reduced during
training.

5.2 Result
The reduction in RMS error while training the reinforcement-learning agent is shown in Figure 6. After

approximately 500 epochs of training, the average error between the set point and actual temperature was
reduced to below the level achieved by the PI controller alone. It appears that further error reduction will not
occur. This remaining error is probably due to the random walk taken by the disturbances and, if so, cannot
be reduced.

The resulting behavior of the controlled air temperature is shown in Figure 7. The middle graph shows
the output of the reinforcement-learningagent. It has learned to be silent (an output of 0) for most time steps.
It produces large outputs at set point changes, and at several other time steps. The combined reinforcement-
learning agent output and PI output is shown in the bottom graph.

6 Conclusions

Three independent strategies for combining neural network learning algorithms with PI controllers were
successfully shown to result in more accurate tracking of the temperature set point of a simulated heating
coil. Variations of each strategy are being studied further and ways of combining them are being developed.
For example, the reinforcement learner can be added to any existing control system, including the combined
steady-state predictor and PI controller.

Additional investigations continue on the state representation [1, 2], the set of possible reinforcement-
learning agent actions, different neural network architectures, and on strategies for slowly decreasing the
amount of exploration performed by the reinforcement-learning agent during learning. Plans include the
evaluation of this technique on a physical heating coil being controlled with a PC and control hardware.

Acknowledgements
This work was supported by the National Science Foundation through grant CMS-9401249.

References

[1] Charles W. Anderson. Q-learning with hidden-unit restarting. In Stephen Jose Hanson, Jack D. Cowan,
and C. Lee Giles, editors, Advances in Neural Information Processing Systems 5, pages 81–88. Morgan
Kaufmann Publishers, San Mateo, CA, 1993.

[2] Charles W. Anderson and S. G. Crawford-Hines. Multigrid Q-learning. Technical Report CS-94-121,
Colorado State University, Fort Collins, CO, 1994.

[3] Peter S. Curtiss. Experimental results from a network-assisted PID controller. ASHRAE Transactions,
102(1), 1996.

0 50 100 150 200 250 300 350 400 450 500
500

1000

1500

0 50 100 150 200 250 300 350 400 450 500
30

40

50

T
ao

0 50 100 150 200 300 350 400 450 500
−100

0

100

Output of
Reinforcement
Learning Agent

250

c
(PI Control
 output plus
 output of RLA)

Figure 7: Performance of combined reinforcement-learning agent and PI controller. Top graph shows
the set point and the actual output air temperature over time. The second graph shows the output of the
reinforcement-learning agent. The third graph shows the combined PI output and reinforcement-learning
agent output.

[4] Peter S. Curtiss, Gideon Shavit, and Jan F. Krieder. Neural networks applied to buildings – a tutorial
and case studies in prediction and adaptive control. ASHRAE Transactions, 102(1), 1996.

[5] S. J. Hepworth and A. L. Dexter. Neural control of a non-linear HVAC plant. Proceedings 3rd IEEE
Conference on Control Applications, 1994.

[6] S. J. Hepworth, A. L. Dexter, and S. T. P. Willis. Control of a non-linear heater battery using a neural
network. Technical report, University of Oxford, 1993.

[7] Minoru Kawashima, Charles E. Dorgan, and John W. Mitchell. Optimizing system control with load
prediction by neural networks for an ice-storage system. ASHRAE Transactions, 102(1), 1996.

[8] R. S. Sutton. Learning to predict by the method of temporal differences. Machine Learning, 3:9–44,
1988.

[9] David M. Underwood and Roy R. Crawford. Dynamic nonlinear modeling of a hot-water-to-air heat
exchanger for control applications. ASHRAE Transactions, 97(1):149–155, 1991.

[10] C. Watkins. Learning with Delayed Rewards. PhD thesis, Cambridge University Psychology Depart-
ment, 1989.

