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Abstract—Ohio’s process of sorting school districts into dif-
ferent athletic divisions based on school enrollment is shown
to create inequities in the sport of cross country running. The
nature of order statistics greatly amplifies how differences in
school enrollment induce differences in competitive results. In
this work, we investigate properties of the division process which
have an effect on competitive equity. We then explore alternative
solutions to the division creation process and study their potential
for promoting fair competition.

I. INTRODUCTION

Our goal is to study how to best partition Ohio’s high
schools into different athletic divisions to promote fair com-
petition in the sport of cross country racing (XC). The
wide enrollment variation among Ohio’s high schools creates
divisions where very large schools compete against much
smaller schools. In our prior work, we revealed how this size
discrepancy translates into inequity in competition for winning
a state championship title[1]. Our goal here is to build on
that prior work by studying a number of alternative processes
for creating athletic divisions and comparing their competitive
equity to the status quo.

We use statistical modeling and Monte Carlo simulation
as our primary tools of investigation. A statistical model of
runners’ performance is used to create virtual runners and
teams for Ohio’s high schools. We simulate these teams com-
peting against each other using Monte Carlo techniques. The
simulated XC seasons produce statistical records of wins and
losses for each team. We use a metric called the normalized
win rate to examine how each team fares in these simulated
competitions.

A. Map of the Paper

We continue this section with an overview of the division-
creation problem in the state of Ohio, and we discuss how
similar modeling techniques have been used previously in
sports analytics. Section II gives the details of our statistical
model and how those are employed in Monte Carlo simula-
tions. We also define the normalized win rate as a key metric
for equity. Section III presents several alternative methods of
creating athletic divisions. In Section IV we look at different
properties of these alternative methods to see how they impact
the normalized win rate metric. In Section V we analyze
the results of different methods of divisional alignment to

determine which methods promote greater equity. Section VI
summarizes our main findings and points to possible future
work.

B. Background
The Ohio High School Athletic Association (OHSAA) gov-

erns and oversees Ohio’s high school interscholastic athletic
competitions[6]. Part of their responsibility is to sort Ohio’s
735 recognized high school programs into different divisions
in order to create fair competition for the teams involved. In
the sport of cross country (XC), OHSAA currently divides the
schools into three different, equally-sized athletic divisions[7].
The intention of the division process is to create an equal
playing field of three divisions with the same number of
teams, thus ensuring no team is advantaged or disadvantaged
by competing against a greater or lesser number of teams.
This division process is done independently for boys and girls
cross country programs; in this paper we concentrate only
on girls XC competition assuming that the analysis of boys
teams is similar. We define a division process as a method
of partitioning XC teams into different athletic divisions; our
goal in this paper is to examine multiple alternative division
processes and to understand their properties.

Fig. 1. School Enrollment Distribution

Figure 1 shows the distribution of school population (fe-
male student enrollment numbers) for the 501 high schools in



the state of Ohio that fielded a cross country team in 2018[8].
Also shown are the three XC divisions (Div I in orange, Div II
in blue, Div III in green). The difficulty identified in our earlier
work is that there is still a large variation in school population
within each division, especially in Division I which contains
a small handful of very large schools. This size discrepancy
creates significant inequity in competition.

C. Prior Work

Both statistical modeling and Monte Carlo simulation have
an extensive and long history of application to sports analytics.
Even as early as 1974, researchers were using Monte Carlo
simulation to study the effects of batting order choice in
baseball [11]. Other researchers have applied similar simu-
lations to measure outcomes [9] and duration [10] in tennis
matches. Certainly the explosion of Sabermetrics following the
popularity of Money Ball shows just how wide sports analytics
has spread and also entered the lexicon of popular culture [12].
We follow in this same tradition to apply similar techniques
to distance running performance.

II. MODEL AND EQUITY METRICS

Here we briefly review the model and equity metrics we use
to simulate competition and measure the fairness of various
division creation processes. A more detailed presentation of
these same concepts is available in our prior work[1].

A. Model

We use data from HeathLine[4] and Strava[14] to model the
5k per-mile pace of 14-18 year old females; the distribution
of which is shown in Figure 2. We fit a beta model to this
distribution as shown by the orange line. For a school with N
female students, we draw N samples from this distribution to
form the school’s entire female student population. We then
select the top seven samples to form that school’s girls XC
team.

Fig. 2. Distribution of Per-Mile Pace of Female High School Students

We use a different beta distribution to model the variation
in running pace for each runner at each school. By sampling

from these distributions (one model per runner), we obtain
the running pace and race finish time for each runner on
a given day of competition. Once we have each individual
runner’s 5k time on a given day, we rank the runners by finish
time, compute each team’s score, and determine the winner of
each meet[3]. In some experiments we simulate a meet with
a small number of teams to study the effect of one parameter
in the model. In other cases we simulate Ohio’s end-of-season
process leading to a state championship:

District Race → Regional Race → State Meet

B. Metric

Our goal is to study how competitive equity for a state
title is impacted by the process of creating athletic divisions.
The standard we established in our earlier work is that of
proportionality[2]: a school’s winning rate (of the state title)
should be in proportion to its population (female enrollment)
within its division. To evaluate winning percentage on the
basis of proportionality we create a normalized win rate.
A team’s actual winning rate is computed as the number
of simulated championships divided by the total number of
simulated seasons. This win rate should be in proportion to the
school’s relative size. We compute the expected win rate by
measuring the school’s size as a fraction of all Ohio students
(sum of all school sizes in that division).

normalized win rate = actual win rate
expected win rate

=
championships

seasons
school population

total Ohio student population

In a fair system, each school should have a normalized win rate
of approximately 1.0; the actual win rate from the simulation
should be equal to the expected win rate based on enrollment.
Figure 3 shows the normalized win rate for all three Ohio
divisions using the current division process. The y-axis is in
logarithmic scale to more accurately reflect the low winning
rate for smaller teams. Schools are plotted with a green dot
if their normalized win rate is above 1.0, and a red dot if the
normalized win rate falls below 1.0. In Division I, the smallest
school has a normalized win rate of about 0.054 (winning
about 18.5 times less often than they should, while the largest
school has a normalized win rate of 5.75 (winning nearly 6
times more often than they should).
While we can use normalized win rate as the metric to compare
the current division process with proposed alternatives, we
must set some guidelines for interpreting normalized win rates
in terms of equity. The ideally division process would produce
a normalized win rate of 1.0 for each team, meaning that a
team wins the state title at a rate proportional to their school
population. This will not be achievable in practice, but it can
serve as an inspirational goal. We settle for applying a scale
to interpret the acceptability of normalized win rates.

We say a team is being treated acceptably if its normalized
win rate falls between 0.67 and 1.5. This implies a team is not
winning 50% more or less often than it should on the basis



Fig. 3. Normalized Wins for All Teams

of the school’s population. This is a fairly ”generous” range
for acceptability. A team is treated marginally if its win rate
is between 1.5 and 2.0 (winning up to twice as often) or if
the win rate is between 0.67 and 0.5 (winning up to half as
often). A team is treated unacceptably if its normalized win
rate is above 2.0 or below 0.5 – winning or losing at more
than twice the rate as it should.

Acceptable

Acceptable

Marginal

Marginal

Unacceptable

Unacceptable

1.0

1.5

2.0

0.67

0.5

Normalized
Win Rate

winning
too often

losing
too often

Fig. 4. Scale of Fair Normalized Win Rate

This scale is now applied using the current division process
to re-plot the XC teams in Figure 5. The teams now plotted
in red have unacceptable normalized win rates (win way too
often or way too infrequently), teams in yellow are marginal,
and teams in green have acceptable normalized win rates.

As we consider alternative division processes, we use the
normalized win rate to compute the following measurements.
For each alternative division process, we conduct a full sim-
ulation (typically 10,000 seasons) to compute the normalized
win rate for each school using each division process. Applying
the scale we count

• Number Acceptable: The number of XC teams with an
acceptable normalized win rate.

• Number Marginal: The number of XC teams with a
marginal normalized win rate.

• Number Unacceptable: The number of XC teams with
an unacceptable normalized win rate.

Fig. 5. E1: Normalized Win Rate

Obviously we seek a division method which maximizes
the number of acceptable teams and minimizes the number
of marginal and especially unacceptable teams. We will also
measure
• Max NWR: The maximum normalized win rate for any

XC team.
• Min NWR: The minimum normalized win rate for any

XC team.
• Average NWR: The average normalized win rate of XC

teams1.
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The maximum NWR tells us how much the best team
is winning, while the minimum shows how infrequently the
worst team is winning. The average NWR metric is especially
helpful in that it gives us a feel for deviation of the average
from the ideal 1.0 normalized win rate for the whole collection
of teams.

III. ALTERNATIVE DIVISION PROCESSES

The current division process creates three divisions with
the same number of schools in each division. The largest
third of Ohio schools are in Division I, the middle third in
Division II and the smallest third in Division III. Presumably,
the goal is to create equal sized divisions so that no school
has to compete against more or fewer teams. In this section
we introduce other possible division processes, many of which
we will subsequently analyze using the normalized win rate
metrics.

While there are a multitude of potential division processes,
we will only consider those that are based on a break point
type of method. For these break point methods, we align all
XC teams in a row, ordered from the smallest school to the
largest school and set break points that mark the boundary
between divisions. Figure 6 illustrates the break points for the

1This is computed as an average of the absolute value of the log (nwr) so
that both low and high NWRs can be averaged together appropriately.



current division process where the different divisions are color
coded. Other division processes differ by where and how they
establish break points.

Note that this class of methods (the break point methods)
create divisions where there is no overlap in size/enrollment;
all the schools in the big division are larger than all the schools
in the next division, and so on. In keeping with Ohio traditional
nomenclature, we call ”Division I” the division which contains
the largest schools (right-most in Figure 6). Division II will
come next and so on, down to the last division comprised
of the smallest schools (Division III or Division IV in our
examples).

break points
Div III Div II Div I

Fig. 6. Illustration of Breakpoints

A. Number of Divisions

An obvious way to modify the division process is to change
the number of divisions. Not all Ohio high school sports have
the same number of divisions. Football has seven divisions.
Volleyball, basketball and baseball each have four, while
other sports have only one or two divisions. Football would
have four divisions if it were to maintain something close
to the same number of teams in each division as does cross
country. Though OSHAA does not publish its deliberations,
we hypothesize that the number of divisions chosen for each
sport depends on the number of schools competing in that
sport, the logistics of competition, and the cost of managing
those divisions. Our prior analysis shows that the inequity in
the sport of XC arises from a large difference between the
smallest and largest school within each division, especially in
Division I. Increasing the number of divisions would reduce
the enrollment disparity within each division. We explore
division processes with three and four divisions.

B. Team Caps

Because the distribution of school populations is exponen-
tial, much of the inequity arises from a small handful of very
large schools. Many of Ohio’s largest school districts have

chosen to divide themselves into two or more separate high
schools as they grow. For example, Hilliard has divided into
three separate high schools (each of which still ranks among
the largest schools in Division I), and Olentangy has divided
into four high schools (again, each of which is significantly
large compared to Div I averages). Conversely, Mason has
remained as a single high school with an enrollment of 3500
students, eclipsing all other programs in Division I by a
significant margin. One solution is to introduce a cap on the
maximum school size. For example, to implement a cap of
1000 students, schools that have more than 1000 students
will create two separate XC teams. These teams can share
coaches, workouts, facilities, etc. However, for the purposes of
competition, they divide and compete as separate teams. We
can imagine that newly entering runners are randomly placed
into one of the two sub-teams; this ensures that teams retain
their basic rosters from season to season. We study models
with and without a cap of 1000 students.

C. Different Divisional Methods

Another tactic is to place schools in divisions differently, to
set the break points between divisions differently. The current
strategy aims for equity by keeping each division the same size
(same number of teams). The break points between divisions
are based on dividing the total count of schools into thirds.
But there are other ways to choose break points. One option
is to choose break points that retain the same absolute size
difference in each division. Another is to choose break points
for the same relative size difference in each division.

For descriptive purposes, let’s assume that N1 is the pop-
ulation of the smallest school in a division and N2 is the
population of the largest in that division.
• Absolute Size Difference (absolute difference) is mea-

sured as the difference between the largest and smallest
enrollments. N2 −N1.

• Relative Size Difference (relative difference) is measured
as the relative difference (ratio) between the largest and
smallest enrollments. N2

N1
.

The table below shows the absolute and relative differences for
the current divisional system2. Note that by keeping the same
number of teams in each division, the absolute and relative
differences for each division vary widely.

Division Largest Smallest Absolute Relative
N2 N1 Difference Difference

I 1728 433 1295 3.99
II 432 217 215 1.99
III 216 106 110 2.03

Fig. 7. Absolute and Relative Difference in Current System

To create divisions with the same absolute difference, we
divide the overall range by 3 to find the interval or absolute
difference for each division.

2The exact largest and smallest are not published for Division II and
Division III, so the authors had to estimate them from public data.



range = largest− smallest = 1728− 106 = 1622

interval =
range
3

=
1622

3
= 540.67

break point 1 = smallest + interval
= 106 + 540.67 = 646.67

break point 2 = smallest + 2 · interval
= 106 + 2 · 540.67 = 1187.33

Division Largest Smallest Count
I 1728 1249 7
II 1154 648 73
III 640 106 424

Fig. 8. Divisions with Equal Absolute Difference

The resulting partition for the Equal Absolute Difference
process is shown in Table 8. The obvious problem is that Div
I now has 7 schools while Div III has 424. The highly skewed
distribution of school enrollments makes this potential division
process highly problematic.

To create divisions with the same relative difference, we
compute the cube root of the ratio between the overall largest
and smallest schools.

factor =

(
largest

smallest

) 1
3

=

(
1728

106

) 1
3

= 2.536

break point 1 = smallest · factor = 268.8

break point 2 = smallest · factor2 = 681.7

Division Largest Smallest Count
I 1728 682 75
II 681 269 206
III 268 106 221

Fig. 9. Divisions with Equal Relative Difference

This process creates a Div II and Div III with approximately
equal size, but with a smaller Div I. However, it is not as
imbalanced as the same-absolute-difference process.

In Figure 10 we see a graphic of all schools competing in
XC and how the different division processes would allocate
teams to divisions. The current method, with equal number of
teams in each division, shows just how large the spread is in
Div I (orange) and how small it is comparatively in Div II and
Div III. The method of equal absolute difference captures only
the small handful of large teams in Div I while creating large
numbers of teams in Div II and especially Div III. The method
of equal relative difference seems to find a happy medium
between the two extremes.

Current divisions
with equal numbers

Divisions with equal 
absolute difference
Divisions with equal 
relative difference

168168168

773424

75206221

Fig. 10. Alternate Methods of Divisional Alignment

IV. SENSITIVITY ANALYSIS

Before we embark upon researching the equity of potential
division processes, we first examine how various properties
of division processes affect normalized win rate. We study the
sensativity of the normalized win rate to various factors to give
us insight as to which potential division processes might be
most equitable. We explore the following three characteristics
of processes:
• Absolute Difference: We study the effect of varying the

absolute difference of two school populations on their
normalized win rates in simulated meets. We keep the
relative difference fixed.

• Relative Difference: Similarly we keep the absolute
difference of two school populations fixed and vary
their relative difference to determine the sensitivity of
normalized win rates.

• Independence of Irrelevant Alternatives: Lastly we
investigate the sensitivity of the normalized win rate to
the number of schools competing in a meet.

In the first two sets of experiments, we conduct a series of
simulated meets of 10 schools. Their populations are denoted
N1 < N2 < N3 < ... < N10. In general, we will be most
interested in examining the normalized win rate of the smallest
and largest schools to see how they are affected by variation in
the absolute or relative population differences. We will keep
the school populations uniformly distributed between N1 and
N10, that is Ni = p · (i − 1) + N1 where p is the difference
in population between two consecutive schools.

A. Sensitivity to Absolute Difference

In this first experiment we keep the relative difference in
population of the two target schools fixed at a constant: N10

N1
=

2. We vary N1 ∈ {100, 200, 300, 500, 1000, 1500, 2000} and
set N10 as twice the size of N1 to keep their relative difference
fixed. The other eight schools are distributed between N1 and



N10. Obviously, the absolute difference between N1 and N10

will change. We simulate 10,000 independent seasons with
each set of population values (70,000 simulated seasons in
all). For each season, we resample each school’s entire female
population, select the top seven for the XC team, and then have
each team compete in a single 10-team meet. We compute the
normalized win rate for each school.

Fig. 11. Sensitivity to Absolute Difference in Population

Figure 11 shows the results of the simulations with these
ten teams. At the smallest population sizes (when N1 = 100,
and N10 = 200) we see that Team1 has a normalized win rate
of 10−0.4 = 0.398 indicating that the small school is winning
this meet about 1

0.398 = 2.5 times less often than they should.
Conversely Team10 has a normalized win rate of 100.2 = 1.58
indicating they are winning almost 60% more often than they
should. As we increase the population of both schools (keeping
the ratio of N10

N1
= 2), we see that the normalized win rates of

both schools do not change substantially. Team10’s normalized
win rate is almost flat, while Team1’s normalized win rate rises
slightly.

We conclude that normalized win rate is relatively insensi-
tive to the absolute difference in school populations. It does
not seem to matter if the absolute different between Team1
and Team10 is 100 or 2000; their normalized win rates do not
differ dramatically as long as the relative difference between
them is fixed.

B. Sensitivity to Relative Difference
We repeat the same set of experiments except this time

we keep the absolute difference of the two schoos fixed:
N10 − N1 = 200. We again vary the population of
the small school over the same set of values (N1 ∈
{100, 200, 300, 500, 1000, 1500, 2000}) and set N10 = N1 +
200. The relative difference N10

N1
between the two schools will

vary from 3 to 1 as we change the population. Again, the other
eight schools are distributed between N1 and N10. We repeat
the simulation of 10,000 independent seasons (10,000 meets)
for each set of population values.

Fig. 12. Sensitivity to Relative Difference in Population

Fig. 13. Sensitivity to Relative Difference in Population

Figure 12 shows how the normalized win rates change as we
vary population. Figure 13 shows the same data where the x-
axis is now the relative difference between Team1 and Team10,
more clearly demonstrating the sensitivity of the normalized
win rates to changes in relative population size. As the relative
difference approaches 1 (when both schools are almost the
same size), the normalized win rates for both programs hover
near the desirable mark of 1.0. As the ratio between the schools
increases, we see a dramatic separation in normalized win
rates. The normalized win rate for Team10 grows steadily,
ultimately rising to a place where Team10 wins 1.7 times more
often than warranted. The normalized win rate for Team1 falls
more dramatically, reaching a point where Team1 is winning
6.3 times less often than they should.

We conclude that normalized win rate is highly sensitive
to changes in relative population difference, especially for the
smaller schools in the competition.



C. Sensitivity to Independent Alternatives

In this final set of experiments, we change the number
of teams in the competition. We keep N1 = 500 and
N10 = 2000 so that the relative and absolute differences in
school populations are fixed. We vary how many other teams
are included in the competition. We change the number of
teams from 2 (a dual meet between Team1 and Team10) to 20
teams. Again, all other team populations are evenly distributed
between the smallest school (at N1 = 500) and the largest
school (N10 = 2000).

Figure 14 shows the sensitivity of normalized win rates to
the number of schools competing in the meet. When there
are just two teams (a dual meet), Team10 has a normalized
win rate of 1.20 and Team1 has 0.19. This is already not a
fair situation, but it gets only worse as more teams are added.
The normalized win rate of Team1 decreases dramatically as
more teams are added, falling to a value of 0.065 with a 20-
team competition; this is winning more than 15 times less
often than they should. The interesting thing to note is that
Team10’s normalized win rate increases as more teams are
added. While their number of wins decreases, their winning
rate increases substantially beyond it’s desired 1.0 value based
on proportional population. Their normalized win rate starts at
1.20 and rises to 1.85 (winning almost twice as often as they
should).

Fig. 14. Sensitivity to Independence of Irrelevant Alternatives

We call this type of sensitivity independence of irrelevant
alternatives because it carries the same feel from the statistical
term. Adding more teams will shrink the win count of both
teams, but their ratio of wins should remain static; it clearly
does not. We hypothesize the cause of this effect. When there
are just two teams, it is unlikely but possible that the smaller
Team1 beats the larger Team10 in a competition; it could
happen from time to time. As we add more teams, Team1
now needs to independently beat a larger number of bigger
teams. They must have multiple unlikely scenarios all arise at
the same time. Team10, meanwhile, wins more often possibly
because the scoring runners from potential upsetting teams are

getting pushed further and further down the finishing rankings
as more teams are added to the mix. This makes it less likely
that a smaller team upsets a bigger team.

We conclude that normalized win rate is moderately sensi-
tive to the number of other schools in the competition. This
is especially important for the state championship scenario as
the smaller teams must have upsets at the district meet, the
regional meet and then again at the 20-team state meet. This
makes an upset bid by small teams statistically improbable.

V. ANALYSIS

In this section, we analyze several potential alternative
methods of divisional alignment using the normalized win rate
metric. We start by explicitly identifying the solutions/methods
we investigate. There are three primary methods of choosing
break points for the division process:
• Method of Equal Numbers attempts to keep the same

number of teams in each division.
• Method of Equal Absolute Difference keeps the same

absolute different in population (Nlarge − Nsmall) for
each division.

• Method of Equal Relative Difference keeps the same

relative difference in population
(

Nlarge
Nsmall

)
for each

division.
For each of these methods of choosing break points, we

explore their application with both three divisions (current
method) and four divisions (adding one more). That gives
us six combinations. We then also implement a cap system
whereby we set an upper limit on school size; schools in
excess of the cap must form two distinct teams where their
runners are randomly assigned to each team. We try a cap
of C = 1000. This gives us 12 different permutations for 12
different experiments. We label the experiments E1 through
E12 as indicated in Figure 15. For each experiment, we run
10,000 simulated seasons and compute the normalized win
rate for each school3. Experiment E1 is the current division
process used by OSHAA; E2 through E12 indicate possible
alternatives.

Cap 3 Divisions 4 Divisions
Method of none E1 E2

Equal Numbers 1000 E3 E4
Method of none E5 E6

Equal Absolute 1000 E7 E8
Differences
Method of none E9 E10

Equal Relative 1000 E11 E12
Differences

Fig. 15. Table of Experiments

3Because each division process produces divisions of different sizes, we
modify the number of districts and regions in each scenario. The goal is to
keep 12-14 teams in each District, choosing the top 5 to move on Regions. We
then alter the number of teams moving on from each Regional championship
to keep a state meet of 15 to 20 teams.



As noted in the section below, we were unable to complete
four the experiments. E5-E8 all stem from the Method of
Equal Absolute Difference. Recall the size of the divisions
created using this method varied dramatically. Thus they are
not practical for implementation or for this study.

The graphs and tabulated data for the remaining eight
experiments are shown in the appendix where they can be
displayed on one page to facilitate visual comparison. Fig-
ure 25 shows the plots of normalized win rates for each school
using each different division process. Figure 24 gives the
complete tabular results for the eight experiments. We place
them in an appendix so that all eight may fit on one page and
be examined together. In the remainder of this section, we
investigate different trends observed in the eight experiments.

Fig. 16. Experiments: Number of Schools Acceptable, Marginal, Unaccept-
able

Fig. 17. Experiments: Mean Deviation from Ideal NWR=1

A. E5-E8: Methods of Equal Absolute Difference

We first discuss the four experiments of Equal Absolute
Difference. As alluded to when we introduced this break point

method, the main difficulty is that it produces divisions with
extreme imbalances in team numbers. Division I is comprised
of only a small handful of schools, while Division III is
comprised of about three-quarters of all schools. We consider
these solutions to be impractical and thus do not simulate them
for their equity. There are no graphical results or tabulated data
for these four methods.

B. Number of Divisions

Among the eight remaining experiments, four feature 3
divisions and four have 4 divisions. In each case, increasing the
number of divisions from 3 to 4 had a significant improvement
on competitive equity. These results are averaged in the table
in Figure 18. We can see that as we increase the number of
divisions from 3 to 4, the number of schools with an acceptable
normalized win rate increases from 180 to 254, and the number
of schools with unacceptable NWRs drop by nearly 80. These
counts are shown graphically in Figure 19.

Num Num Number Number Normalized
Div Accept Marg Unaccept Win Rate
3 180.25 144.50 188.75 1.94025
4 254.00 150.25 109.25 1.60950

Fig. 18. Average Results, 3 vs 4 Divisions

Fig. 19. 3 vs 4 Divisions: Acceptable/Marginal/Unacceptable

The average normalized win rate also improves substan-
tially. The average NWR drops from 1.94 to 1.61 by adding
another division. While both marks are ”marginal”, the ad-
dition of a fourth division almost drops the average to the
”acceptable” category of 1.50. These NWRs are shown graph-
ically in Figure 20.

The conclusion is self evident. Adding another division
makes a significant improvement to all forms of equity metrics.

C. Cap

In this section we analyze the presence or absence of a
cap. Of the eight experiments, four have no cap in place and
four have a cap of 1000 students. Figure 21 summarizes the
presence/absence of a cap. With a cap, the number of schools
with an acceptable NWR increases by 20 while the number



Fig. 20. 3 vs 4 Divisions: Normalized Win Rate Deviation

of unacceptable schools drops by 43. Similarly, the overall
average normalized win rate decreases from 1.88 to 1.67 with
the addition of a cap.

Cap Num Number Number Normalized
Size Accept Marg Unaccept Win Rate
none 200.50 133.25 170.25 1.883
1000 233.75 161.50 127.75 1.667

Fig. 21. Average Results, No Cap vs Cap=1000

While the normalized win rate metrics appear to improve
only moderately under caps, we must keep in mind that the
presence of caps really only affects the schools in Division
I. When we look at Division I, we see that the presence
of caps dramatically changes the average NWR. The average
normalized win rate falls from 3.673 to 1.898 when the current
division process includes a cap, a 48% improvement in Div I.

Cap Size Normalized Win Rate
none 3.673
1000 1.898

Fig. 22. Average Results Div I only: No Cap vs Cap=1000

There are other highly visible improvements with caps in
place. For example, using the current division method (Equal
Numbers with three divisions), Mason wins 850 state titles in
simulation. When we introduce caps, Mason-A and Mason-B
(the two subteams created when Mason splits) win 295 titles
combined! Mason’s normalized win rate falls from 5.75 when
alone to an average of 1.9 for the two subteams. In general,
introducing caps drops the Max NWR from 5.75 to 2.41 and
raises the Min NWR from 0.026 to 0.126. Clearly, the cap
concept greatly curtails the excessive win rates of the very
largest programs and helps to raise the performance of the
very smallest programs; caps greatly improve the competitive
equity for schools in the ”tails” of the distribution. This shows
up prominently in Division I which suffers from the greatest
competitive inequity.

D. Equal Numbers vs Equal Relative Difference
As we have found Equal Absolute Difference to be unwork-

able, that leaves two general methods: Equal Numbers versus
Equal Relative Difference. There are four experiments of each
method. Figure 23 shows the average equity metrics for these
two groups of experiments. As can be seen, there is statistically
no difference in the average of the two methods, they perform
about equally well on average. However, looking more closely
at the individual experiments (see Table of Figure 24), we do
see that among the eight distinct experiments, there is a slight
advantage for E12 over the others, which features the method
of Equal Relative Difference. We also see in this table, that
Equal Relative Difference outperforms Equal Numbers only
when there is a cap in place. Otherwise, Equal Numbers fares
better.

Method Num Number Number Normalized
Accept Marg Unaccept Win Rate

EqNum 219.25 146.25 148.0 1.75975
EqRelDiff 215.00 148.50 150.0 1.79000
Fig. 23. Average Results: Equal Numbers vs Equal Relative Difference

VI. CONCLUSION

Our goal in this work is to explore alternatives to the default
division process that could improve the competitive equity
in Ohio high school girls’ cross country. In our sensitivity
analysis we discovered three important conclusions:
• Competitive equity is not affected by the absolute dif-

ference in enrollment numbers between different XC
programs. As long as the enrollment ratio between the
school’s is fixed, it matters not how much larger one
school is than another.

• Competitive equity is significantly anticorrelated to the
relative difference in enrollment numbers between differ-
ent XC programs. The enrollment ratio between schools
has a significant impact on the ability of teams to compete
fairly. Unfortunately, the inequity arises quickly, even
with ratios of 1.25 or 1.5.

• There is a surprising effect of the number of teams in the
competition. Adding more teams to a competitive event
actually worsens the competitive equity. This suggests
that in situations where there are large enrollment ratios,
we should avoid large meets (more than five teams) if
possible.

Unfortunately, the current OHSAA process includes both of
these negative characteristics. The enrollment ratio between
large and small schools in Division II and Division III is
about 2.0; it is even worse in Division I with a ratio of 4.0.
The process leading to a state championship title features a
sequence of three larger meets (with 15 to 20 teams), thereby
greatly amplifying the effects of enrollment disparity not just
once, but three times in succession. Each of these three meets
acts like a filter to cut out the smaller programs.

We then propose and explore a total of 12 models (including
the baseline current model) that alter or add features to the



division process. These 12 models feature three different
methods of establishing break points for divisions:
• The Method of Equal Numbers: ensuring that each divi-

sion has the same number of teams.
• The Method of Equal Absolute Difference: ensuring the

enrollment difference between the largest and smallest
teams in each division is the same.

• The Method of Equal Relative Difference: ensuring the
enrollment ratio between the largest and smallest teams
in each division is the same.

We discovered the Method of Equal Absolute Difference
produces divisions that have wildly different numbers of teams
(7 teams for Div I, 424 teams for Div III) and thus did
not implement or test division processes with this method.
The Method of Equal Relative Difference produces divisions
of different sizes, but not so drastically as Equal Absolute
Difference. We found a slight improvement in competitive
equity using Equal Relative Difference over Equal Numbers,
but only if a cap is included as well; otherwise, Equal Numbers
performs slight better.

We also tested divisions processes with a cap. Teams from
schools with more than 1000 female students would subdivide
their runners into two teams (effectively halving the school
enrollment population). The inclusion of a cap improved
the competitive equity in all scenarios. The improvement
was modest for an overall average NWR of 11%, but the
improvement substantial within Division I, showing a 48%
improvement in NWR.

Finally we tested a set of methods using four divisions
instead of the baseline three divisions. Here again we saw an
unambiguous improvement in all scenarios where we increase
the number of divisions. The improvement in Normalized Win
Rate deviation was more significant at 17%. We hypothesize,
though did not test, that creating even more divisions would
further improve competitive equity substantially.

A. Recommendations

From our test results, we propose the following recommen-
dations for improving the division process in Ohio XC.

1) Increase the Number of Divisions: There is clear
evidence that the competitive inequity in high school
XC racing arises from significant enrollment variation
of schools within divisions. There is simply no way to
mitigate these effects. Increasing the number of divisions
lowers the ratio between the largest and smallest schools
in each division – the key factor in competitive equity.

2) Manage the Largest Schools: There are just a small
handful of schools with large enrollments and yet they
dominate the XC landscape, both in simulation and in
reality. The top 20 largest programs comprise 3.9% of
the schools yet they win over 51% of the state titles in
simulation. Competitive equity would improve greatly if
there were some way to manage these largest programs.
A cap would be one method, though it is not likely to be
politically favorable. A second way would be to create a

separate division with just the largest group of schools
– to isolate them from the other 95% of the schools
which are much smaller. Isolating the largest programs
will have a great effect on improving equity for the other
schools.

3) Retain Equal Numbers: There is not enough of a
significant advantage to the Method of Equal Relative
Difference to overcome the administrative difficulties of
managing divisions of different sizes. Equal Numbers
would work significantly better with some combination
of the two prior recommendations. The exception might
be a separate smaller division that includes only the
handful of very large schools (perhaps those with en-
rollments above 900), and then use Equal Numbers for
the remaining schools in three other divisions.
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Count of Schools Normalized Win Rate
Exp Acceptable Marginal Unacceptable Variance Max Min
E1 162 137 205 2.073 5.747 0.026
E2 258 128 118 1.627 4.700 0.131
E3 182 165 176 1.808 2.401 0.126
E4 275 155 93 1.531 2.377 0.161
E5 na na na na na na
E6 na na na na na na
E7 na na na na na na
E8 na na na na na na
E9 182 114 208 2.077 3.503 0.032

E10 200 154 150 1.756 2.381 0.110
E11 195 162 166 1.803 2.410 0.055
E12 283 164 76 1.524 2.111 0.238

Fig. 24. Table of All Experimental Results

VII. APPENDIX I: GRAPHS OF EXPERIMENTAL RESULTS



E5 process not viable E6 process not viable

E7 process not viable E8 process not viable

Fig. 25. All Graph Results


