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Abstract

We examine the situation in which multiple reinforce-
ment learning agents attempt to speed up the learn-
ing process by sharing information. The agents do
not interact with each other in the enviroment; in-
stead each agent is learning the same task in isola-
tion from the other agents. As reinforcement learn-
ing is a trial-and-error approach, an agent’s perfor-
mance in the environment typically increases with
the level of experience an agent has in interacting
with that environment. We show how the agents can
share Q-values in order to arrive at an optimal pol-
icy using fewer trials.

1 Introduction

Many reinforcement learning tasks require exten-
sive learning experience in order to achieve sound
performance. Multi-agent systems (MAS) are able
to increase the speed of learning by communicat-
ing/sharing information during the learning process.
While there are a multitude of different MAS learn-
ing algorithms, we concentrate on an approach that
will be amenable to a parallel hardware application
in a future study. Specifically we assume that all the

agents are identical, they are all interacting with the
same environment in order to learn the same task,
and they are all independent of each other; agents do
not interact with each other within the environment.

There is a recently active history of research and
publication in MAS learning. Gerhard Weiss pro-
vides a survey of work in this field and identifies the
key issues of learning in MAS [13]. Tan is among
the first to publish in this area [11]. In his work, he
identifies three key ways MAS can benefit from co-
operation: sharing perceptions, sharing raw environ-
ment interactions (state-action-reward-state values),
and sharing learned policies. Nunes studies an envi-
ronment of heterogeneous learning agents in which
each provides advice that is then incorporated via su-
pervised learning [7]. Littman studies competing RL
agents within the context of Markov games [4, 5].
There are many published papers in which agents co-
operate to solve different parts of a task [9, 2, 6]. In
Bagnell [1], multiple RL robots learn in parallel by
broadcasting learning tuples in real time. However in
Bagnell’s work, parallel RL is only used as a means
to study other behavior; parallel RL is not the object
of investigation. A parallel Q-learning algorithm is
used by Laurent and Piat to solve parts of a block-
pushing problem [3]; agents combine their experi-
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ence in a globally accessible Q-value table. Print-
ista, Errecalde and Montoya provide a parallel imple-
mentation of Q-learning in which each agent learns
part of the Q-values and then shares these with other
agents [8].

Our study has the following characteristics. The
agents are all learning the same environment and are
internally identical (same agent architecture); hence
we refer to this type of MAS as ”homogenous”. Im-
portantly the agents are all isolated and indepen-
dent; they do not interact with each other within the
environment. Our method of communication is to
share Q-values at different points during the learn-
ing process. Our eventual goal is to implement the
Q-learning algorithm on parallel hardware. Though
we do not address any parallel implementations here,
this type of homogenous MAS must first be studied
to see which type of information exchange in viable
in the MAS environment.

In Section 2 we review the basics of the rein-
forcement learning. Those familiar with this learn-
ing method may skip or browse this section. Sec-
tion 3 discusses many of the issues involved in trans-
forming the basic reinforcement learning algorithm
for the multi-agent environment. We propose two
MAS learning algorithms and sketch the operation
of each. An example task is presented in Section 4
along with experimental results for our two sharing
algorithms. Finally we present some concluding re-
marks and comment about on-going work in this area
in Section 5.

2 Reinforcement Learning

Reinforcement Learning (RL) is the algorithmic
embodiment of human learning by trial-and-error.
Simply, an agent interacts with an environment by
trying various actions to ascertain those that yield the
best average rewards. Unlike a supervised learning

agent that has an instructor retrospectively providing
the optimal action choice for each situation, the RL
agent must discover these optimal actions on their
own by trying all the actions and selecting the best
one. Sutton and Barto provide an excellent text on
RL [10]. We utilize the basic Q-learning algorithm
first proposed by Watkins [12].

2.1 RL Overview

Formally, the environment is modeled by a Markov
decision process. The agent perceives its current
state,si and then must select an actiona from the
set of available actions. As a result of the action
selection, the agent moves to a new statesj and
receives a reward signalr. In episodic tasks, the
agent continues to interact with the environment
until a goal or halting state is reached. The agent’s
objective is to select the set of actions, one per
state, that will achieve the maximum sum of reward
signals.

A few considerations complicate the learning pro-
cess. First, there is often a trade-off between short-
term and long-term gains; the agent may need to
forego a large immediate reward in order to reach
states that yield even better possibilities. Another
consideration is premature convergence to a subop-
timal set of actions. As the agent continues to in-
teract with the environment it must decide between
selecting an action that it currently believes is opti-
mal vs selecting another action in the quest for an
even better action; this situation ofexploitationvs
explorationarises because the environment is often
stochastic.

2



2.2 Algorithms

Temporal difference learning is a hybrid approach
that combines the best of dynamic programming
and Monte Carlo methods. Q-learning is the most
common and well-studied variant of temporal differ-
ence learning [12]. Essentially a table of Q-values
is maintained with an entry for each state/action
pair. A Q-value, Q(s, a), is an estimate of the
expected sum of future rewards that the agent is
likely to encounter when starting in states and
initially selecting actiona; this sum includes not
only the immediate reward signal but also all the
other rewards accumulated on the way to the goal
state. The purpose of reinforcement learning is to
discover these Q-values empirically. If the agent has
a complete table, then the agent may interact with
the environment optimally by searching through
the set of available actions for the current state and
selecting the table entryQ(s, a) with the maximum
value.

The basic update equation for Q-learning is:

Q(s, a)← Q(s, a) + α · TDerror, (1)

TDerror = max
a′

{
Q(s′, a′)

}
+ r −Q(s, a), (2)

whereα ≈ 0.1 is the learning rate.

To see how this equation arises, consider the fol-
lowing. Let us assume we are in states, have se-
lected actiona and thus will experiencek more re-
wards en route to the goal state. Thus:

Q(s, a) ≈ r1 + r2 + r3 + ... + rk. (3)

Now consider that as a result of taking actiona
from states we receive our immediate reward (ther1

above) and then transition to the next states′. The Q-
values in the table for states′ indicate our expected
sum of future rewards when starting from this state.
These should be all the rewards we have listed above
except for the one we just received (r1). Specifically
for some actiona′ we have:

Q(s′, a′) ≈ r2 + r3 + ... + rk. (4)

Substituting the two equations we arrive at

Q(s, a) = r1 + Q(s′, a′). (5)

Remember that eachQ entry is an estimate of the
true value of the state/action pair. Since states that
are closer to the goal are typically more accurate,
r1 + Q(s′, a′) is probably a more accurate estimate
of expected future rewards than isQ(s, a). We use
the difference between these two values, thetempo-
ral difference error, to update the value forQ(s, a).
Thus we arrive at the basic temporal difference up-
date step of Equation 1.

3 Multi-Agent Sharing Algorithms

Since the performance of RL algorithms depends
upon the agent’s experience, we should be able to ac-
celerate the learning process by sharing experience
among agents who are all interacting with the same
environment. Before we embark on a discussion of
specific algorithms, we must first clearly state what
is meant by ”accelerating performance” so that we
have a quantifiable objective.

There are two basic dependent variables that can
be used to measure the speed of a learning algorithm:

1. By number of trials.
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2. By wall clock time.

These two metrics are synonymous for single
agent systems but will differ in a parallel implemen-
tation MAS.

The first dependent variable assesses an agent’s
performance as a function of the amount of learning
experience. An agent’s action choice and subsequent
move to another state counts as one unit of expe-
rience. A sequence of actions from the start state
to the goal state is one trial (also called a trajectory
or episode). The trial is a convenient point in the
learning process to assess the agent’s performance.
We can use a count of the number of trials it takes
an agent to reach a specified performance metric as
thetimethe agent needs to learn.

The second possible dependent variable is elapsed
time, or wall clock time. Here the objective is
to reach a given level of learning proficiency as
quickly as possible. Naturally this metric will vary
depending upon hardware platform, but for a fixed
platform, we can make algorithmic choices to speed
up the process.

In this paper, we focus on the first metric of
learning-per-trial to assess performance. Though
improved wall-clock time will ultimately be the
holy grail of a parallel implementation, here we
first seek an algorithm that allows our agents to
collectively gain the most information from the
available training data. Because we will eventually
implement these algorithms on parallel hardware,
we temper our algorithmic choices with realistic
expectations about computing time. Though there
are algorithms that employ enormous amounts of
processor time and/or memory in order to achieve
optimal learning speed on a per-trial basis, we
do not consider these choices. Our goal is to

retain the same general assumptions about realistic
individual reinforcement learners and combine
their experience in a computationally tractable way
so as to improve the learning of the group as a whole.

Figure 1 depicts the central idea behind homoge-
nous multi-agent reinforcement learning. The algo-
rithms alternate steps of individual agent learning
(Q-Learning) with episodes of inter-agent sharing.

Agent 1

RL Learning

Step 1

Agent 2 Agent 1 Agent 2

EnvironmentEnvironment

share

Step 2

RL Learning

Figure 1: Sharing Experience

There are several variables that can be altered
within this framework:

• Number of agents:
We vary the number of agents from one (single
agent reinforcement learning) to ten.

• Frequency of Sharing:
The frequency of sharing refers to the number
of learning trials that elapse in Step 1 before
the agents share experience. We show that more
frequent sharing improves learning speed.

• Type of Information Shared:
We study how individual agents can share por-
tions of their Q-values though there are many
other types of sharing (environmental percep-
tions, recommendations, raw experience, etc.).

• Timing of Update:
Updates can be synchronous where all agents
share information simultaneously, or asyn-
chronous where agents only share at irregular
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intervals and they only share with ”available
neighbors”. Here we only consider the fully
synchronous case.

3.1 Why is homogenous multi-agent rein-
forcement learning hard?

In an ideal situation, ten agents working in parallel
would collectively learn ten times as fast. We refer
to this ideal situation aslinear speed-up: n agents
learn with 1

n fewer trials. In practice, linear speed-up
is not a realistic possibility.

The root of the difficulty lies in the contention
between several key factors. The primary reason
for not achieving linear speed-up isduplication of
learning: some of an agent’s learning experience
will be discarded or wasted because other agents
are learning the same thing. Intuitively we would
like agents to communicate as often as possible to
minimize the amount of learning overlap. We would
also like to have large amounts of memory and data
exchange in order to not lose any information in the
sharing process.

However, each of these requirements cannot be
met in many realistic learning situations. The first
requirement of frequent communication necessitates
high bandwidth. In an actual hardware imple-
mentation, the time penalty for communication
between processors (ie agents) will severely limit
the communication rate. Our second request for
large information stores may also not be practical
for individual processor (agent) memories and es-
pecially for information transfer (again bandwidth)
between agents. We will have to settle on a happy
medium of occasional communication and limited
information storage/exchange.

3.2 Two Algorithms

We present two different sharing algorithms. While
there are many dozens of RL sharing algorithms, we
present two relatively simple ones and evaluate their
performance.

Constant Share RL

In Constant Share RL we assume access to
unlimited bandwidth and thus have the agents
communicate after every single move. We assume
that there is a common Q-value table which all the
agents can access and update. Each agent takes
one move and then updates their corresponding
Q-value. This algorithm is probably unrealistic
for porting to parallel hardware as the penalty for
shared memory will overwhelm any performance
gains from multiple agents. However in certain
situations, such as learning on a slower real-time
system, this type of algorithm could be realistically
implementable.

Max Share RL

Here we make the assumption that agents com-
municate much less frequently (perhaps every104

trials or so). Each agent will have to store its
own experience in Q-value form and then share
the Q-values. Every agent maintains a series of
counters, one counter per Q-value. Each time the
agent updates its Q-value table, it also increments its
own counter. At the time for sharing, each Q-value
is ”voted” upon by the collection of agents. The
agent with the most experience (largest counter) for
that Q-value wins the vote and its Q-value entry is
shared among the whole population.

This algorithm has the nice feature that the agent
with the most experience wins; it is reasonable to
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assume that this agent has the best estimate of the Q-
value. However, it is likely that many other agents
also have learning experience with this Q-value.
Their experience is completely discarded and hence
is ”wasted” computation. We would expect this algo-
rithm to have significantly less than the ideal linear
speed-up.

4 An Example Task

We turn to a two-person childhood guessing game
as an initial test for our multi-agent learning al-
gorithms. Theleader thinks of a secret number
between 1 and 20 inclusive. Theguesserthen makes
guesses at the secret number. After each guess, the
leader tells the guesser if their guess was (i) correct,
in which case the game ends, (ii) too high, or (iii)
too low. The guesser continues until they narrow in
on the secret number. The objective of the guesser is
to arrive at the secret number using as few guesses
as possible.

4.1 Game Implementation

For machine learning purposes, the environment
plays the role of the leader while the individual
agents each assume the role of guesser. We ex-
tend the game to numbers 1 through 100 to increase
the state space and hence increase the learning effort.

Hopefully, most computer science freshmen
will quickly see that the optimal guessing strategy
is a binary search tactic in which we guess the
middle number between the current lower and upper
bounds; without the benefit of an undergraduate
education in computer science, our RL agents must
learn this optimal strategy by trial and error.

Each state of the environment is composed of an
ordered pair(lb, ub) wherelb is the current possible
lower bound andub is the current possible upper
bound. The starting state iss = (1, 100) to indicate
that all numbers between one and one hundred are
initially possible. Suppose the agent guesses 50 and
the environment responds ”lower”; the next state is
then(1, 49) to indicate the change in upper bound.
There are100·101

2 + 1 = 5051 possible states where
the extra state was added as the goal state which is
reached after the secret number has been guessed
(necessary for the implementation of RL). The set
of legal actions for each state is any numbera such
that lb ≤ a ≤ ub. Notice the set of action choices
is different for each state and also that we do not
permit our agent to guess outside of the upper and
lower bounds (a wasted guess).

The reward signal isr = −1 for every possible
state/action pair. This signal acts as a ”negative
counter” incrementing for each guess that does not
reach the goal state. Thus in order to maximize
the sum of rewards, the agent will be motivated to
reach the goal state in as few guesses as possible to
accumulate the fewest number of negative rewards.
This type of reward signal is common for tasks
in which the objective is to reach the goal in the
fewest number of steps. A quick calculation shows
that by following the optimal guessing strategy
(binary search), an agent will arrive at the correct
number after an average of 5.8 guesses; that is, the
Q-value for the starting state,Q(s, a), is −5.8 for
s = (1, 100) anda = 50.

4.2 Evaluation

Each of the learning algorithms is permitted to
operate for a specified number of trials (games).
Then we extract the current policy from the agent(s)
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and evaluate this policy to ascertain the learning
progress of the algorithm.

Policy extraction is relatively straightforward. For
each state,s, we scan through the set of available
actions to find the maximum Q-value. Keep in mind
this is theestimatedoptimal action which is based
upon the Q-values learned to date; if the Q-values
are not correct, the actions will not be correct.

Policy evaluation is a bit more tricky. Once we
have an agent’s policy, we can simulate a game
by following the policy until we guess the secret
number. We must compute the required number of
guesses for each possible secret number assuming
all secret numbers, 1..100, are equally probable.
We average the number of guesses over all 100
secret numbers and use this result as a metric of our
policy’s performance.

For each of the algorithms, we compute the num-
ber of trials that elapse before the agent discovers the
optimal policy of 5.8 guesses on average. We repeat
the experiment multiple times and average the num-
ber of trials over all experiments to arrive at a metric
that allows us to effectively compare the learning ef-
ficiency of the different multi-agent RL algorithms.

4.3 Learning Algorithm Results

Experiment 1: Learning Improvement

In this first experiment we show the performance
improvement of a single RL agent learning the 100-
guessing game. As can be seen from Figure 2, the
agent quickly reduces the average number of guesses
from about 50 (a linear search guessing strategy?)
to about 20. It then takes the agent more extensive
experience to make further small improvements to its
policy; it must ”find” the correct policy for not only

the most common states but also the more obscure
ones. On average, it takes a single agent about 2.2
million trials to finally learn the perfect policy and
arrive at the 5.8 average guess mark. Only the first
1000 trials are shown on this graph.
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Figure 2: Performance vs Learning Experience

Details:

We run 100 experiments each consisting of an agent that is

policy-evaluated after every 10 trials of experience for a total of 1000

trials. The agent uses standard Q-learning withα = 0.1, ε = 0

(ε-greedy policy),γ = 0.

Experiment 2: Speed-up vs Number Agents

Next we examine how the learning speed can be
improved by adding more agents. Here we study
the speed-up effect for each algorithm:Constant
Share in which each agent updates a universal
Q-table after each step of interaction, andMax Share
in which agents vote after every 10,000 trials on
which Q-values to keep. Figure 3 shows the speed-
up obtained by adding extra agents to the population.

In the Constant Share algorithm we see a surprise;
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this agent learns with less than the ideal linear
speed-up efficiency even though it is the most fre-
quent mode of information exchange. From the table
below, we see that one agent (single Q-learning)
takes about 2.2 million trials to reach the optimal
policy. Ten agents require only 296,000 trials to
reach the objective but this is more than the1

10 of
the 2.2 million trials of a single agent. The speed-up
here is only 0.76 of the ideal linear goal.

# Agents
Algorithm 1 2 3 5 10

Constant Share 224.6 117.4 80.7 52.5 29.6
speed-up/# agents 1.0 0.96 0.93 0.86 0.76

Max Share 220.7 175.6 165.5 152.8 140.0
speed-up/# agents 1.0 0.63 0.45 0.29 0.16

# Trials (×104) to learn optimal policy.

As expected, the speed-up for the Max Share al-
gorithm is significantly less. Ten agents here require
1.4 million trials of experience for a speed-up of
only 0.16.
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Figure 3: Learning Time vs # Agents

Details:

For each algorithm (Constant Share and Max Share), we run

50 experiments each consisting of an agent that is policy-evaluated

after every 10,000 trials of experience; the results in the graph are

averaged over the 50 experiments. Agents in the Max Share algorithm

are permitted to share experience just prior to policy evaluation (the

Constant Share agents are already using one set of Q-values). For each

algorithm, we run the experiment usingn = 1, 2, 3, 5, 10 agents. All

agents use standard Q-learning withα = 0.1, ε = 0 (ε-greedy policy),

γ = 0.

Experiment 3: Speed-up vs Sharing Rate

In this third experiment we confirm our belief that
sharing information more frequently will expedite
the learning process. For the Max Share algorithm
with n = 5 agents, we study the performance gained
by reducing the number of trials between trials of
sharing. In Figure 4 we see that sharing every 100
trials requires 720 thousand trials to reach the opti-
mal policy (compare to 1.51 million trials for sharing
every 10,000).
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Figure 4: Learning Time vs Sharing Frequency

Details: We run the Max Share algorithm forn = 5 agents using
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intervals of10k, 5k, 1k, 500, and100 trials between sharing periods.

Each experiment is run 30 times and the results are averaged. All agents

use standard Q-learning withα = 0.1, ε = 0 (ε-greedy policy),γ = 0.

5 Concluding Remarks and Future
Work

Here we have shown that homogeneous MAS
can expedite the learning process via information
exchange. However, our results indicate thatefficient
speed-up is difficult to obtain. Experiments on each
of the algorithms, Constant Share and Max Share,
have some sobering conclusions about the potential
for speed-up on a parallel platform.

First consider the Constant Share algorithm in
our second experiment in which we compare the
speed-up achieved by varying the number of agents
in the population (1, 2, 3, 5, 10). For the Constant
Share algorithm, where we would most expect
nearly ideal linear speed-up, we fall far short of the
goal. Ten agents are only 7.6 times more efficient
than a single agent (not 10 times more efficient).
Why? We hypothesize that the MAS encounters
learning overlap problems even at this fine-grained
level of sharing.

Consider what happens when two agents embark
on learning all at once (parallel case) vs what
happens when an agent does two consecutive trials
(serial case). In the serial case, the second trial can
utilize all the Q-values that were updated during the
first trial. But in the parallel case, the Q-values along
the trajectory to the goal state have not yet been
updated; both agents are ”flying blind” in the state
space. This has two effects: first the Q-values do not
get updated in the same way and second the state
space is searched less efficiently (more duplication).

Keep in mind that the Constant Share algorithm
is most likely not realistically implementable on
parallel hardware.

For the more realistic Max Share algorithm,
the speed-up is even less impressive. Ten agents
obtain only 1.6 times linear speed-up over a single
agent (instead of 10 times). The situation improves
only slightly when we increase the frequency of
information exchange as in the third experiment.

These results point to considerations when we
move toward an implementation on a parallel sys-
tem. First, massively parallel implementations with
hundreds of processors are probably not realistic.
Our results show that as the number of agents is
increased the speed-up drops quickly probably due
to an increase in wasted learning overlap. Second,
any sharing algorithm will have to be tuned to the
particulars of the parallel computing hardware. We
reduce the learning time by having multiple agents
in parallel. But these agents must communicate and
doing so incurs a time penalty that depends upon the
bandwidth of the system.

These initial results point to obvious avenues for
future work. Primarily, there are many other sharing
algorithms that we have not considered here. Some
of the others may be more efficient at exchanging
experience and directing non-overlapping search
strategies. Also we need to test the algorithm(s)
on different tasks. It may be that the 100 guessing
game is particularly suited to some types of sharing
algorithms but not others. It seems reasonable that
tasks with more sparse state spaces would benefit
even more from a parallel implementation because
of the reduced likelihood of overlapped learning.
Finally there is the obvious step of porting these
algorithms to actual parallel hardware. Here we will
be able to study the true trade-offs of communication
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overhead vs experience sharing.
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