
Tree Traversals and Permutations

Todd Feil, Kevin Hutson, R. Matthew Kretchmar

Abstract

We build upon the previous work on the subset of permutations
known as stack words and stack-sortable words. We use preorder,
inorder and postorder traversals of binary trees to establish multiple
bijections between binary trees and these words. We show these
operators satisfy a sort of multiplicative cancellation. We further
expand the study of these operators by demonstrating how properties
on trees are related to properties on words.

1 Introduction

Knuth [9] considered permutations created by using a stack. Consider pass-
ing the sequence 1, 2, 3, . . . , n through a single stack by means of a series
of pushes and pops, where a push will push the next number in the input
string and a pop removes the top of the stack to the output string, with
the proviso that the stack empties after all integers have been pushed. For
example, if n = 4, then the sequence, push, push, pop, push, pop, push,
pop, pop, would result in the permutation (2341). (Our convention is to
represent the permutation π with the sequence π(1), π(2),. . . , π(n). Thus,
if π = (2341) then π(1) = 2, π(2) = 3, and so on.) Figure 1 shows midway
through the creation of the permutation (2341).

It is easy to see that a permutation obtained in this way is a 312-avoiding
permutation (For example, see Grimaldi [7].); that is, a permutation π(1),
π(2),. . . , π(n) for which there is no i < j < k where π(j) < π(k) < π(i). A
permutation π obtained in this manner is called a stack word. For example,
the permutation π = (25134) is not 312-avoiding since π(2) = 5, π(4) = 3
and π(5) = 4.

Likewise, a permutation that can be sorted using a stack in the man-
ner described is called a stack-sortable word. These are precisely the 231-
avoiding permutations; that is, a permutation π for which there is no
i < j < k where π(k) < π(i) < π(j).

initial state after push, push, pop, push

2

1
3

41234
inputinputoutput output

Figure 1: Creating a stack word

Recently, there has been interest in stack words, restricted permuta-
tions, stack-sortable words, and their extensions. (See [1], [2], [3], [4], [8],
[9], [10], [14], [16], [17], and [18].) Several have related these restricted
permutations to various structures, for example, stacks. While bijections
between stack words (or stack-sortable words) and binary trees have been
given previously (see [4], [6], [15], and especially [9], [12], and [13]), we give
additional bijections in which the structure of the tree reflects the stack
operations in a straightforward manner.

These stack and stack-sortable words can be produced by applying var-
ious traversals of binary trees. This idea has been used by [9], [12], [13],
and [4]. In effect, we are modeling stack operations with these traversals.
We apply the three common binary tree traversal algorithms of preorder,
inorder and postorder to first label the tree, then read the labels. The order
the labels are read gives us a permutation. That is, for a given binary tree
T , we pick a labeling traversal from preorder, inorder and postorder tra-
versals. We then pick a reading traversal from among these three options.
Thus, we produce a permutation by:

1. Labeling the nodes of T with 1, 2, . . . , n using the chosen labeling
traversal.

2. Reading the labels from the nodes of T produced in step (1) using
the reading traversal.

Note for a given binary tree T , each choice of labeling and reading traversal
produces a potentially different permutation of 1, 2, . . . , n. Obviously, if the
labeling and reading traversals are the same, the resultant permutation is
the identity permutation. If a permutation is obtained from a binary tree
by labeling with a preorder traversal and reading with an inorder traversal,
we’ll call it a PreIn permutation. Permutations obtained by this process
using different labeling and reading traversals will be similarly named.

2

In Section 2 we show a bijection between stack words and binary trees
which are labeled using an inorder traversal and read using a postorder
traversal. That is, we can convert stack words to trees and vice versa.
Section 3 shows how an inorder labeling and a preorder reading produces
stack-sortable words. Furthermore, we can produce stack words and stack
sortable words with two other label/read traversals.

Section 5 reveals an interesting “canceling” feature of these traversal
operators when they are composed. The preorder labeled and postorder
read permutations possess some properties not present in the other stack
words; these are discussed in Section 6.

We can use a combination of operators to convert from a binary tree
to a stack word and then back to another (different) binary tree. If we
repeat this process, we create a series of trees (and their intervening stack
words). This process creates cycles that partition the set of stack words.
We develop an equivalence relation in Section 7.

2 Stack Words, Stack-sortable Words and Bi-

nary Trees

Notice that the sequence of pushes and pops necessary to produce a stack
word (or sort a stack-sortable word) can be conveniently given by a sequence
of n pairs of parentheses, where a left parenthesis corresponds to a push
and a right parenthesis corresponds to a pop. (This was observed by West
[16].) For example, the sequence of pushes and pops producing (2341) can
be expressed as (()()()). If you label the parentheses pairs starting at 1,
then reading off the label of the right parentheses will give the corresponding
stack word. In our example (1(2)2(3)3(4)4)1 yields 2341. This establishes a
bijection between the set of stack words of length n and the set of n pairs
of parentheses.

If π is a stack word, that is, a 312-avoiding permutation of {1, 2, . . . , n},
then clearly π−1 is a stack-sortable word; that is, a 231-avoiding permu-
tation. Furthermore, the sequence of parentheses (sequence of pushes and
pops) that sorts π−1 is precisely the sequence of parentheses that creates
π. Thus, the stack word we obtained above, 2341 corresponds to the stack-
sortable word 4123, which is sorted by the sequence of stack operations
given by (()()()).

Now consider binary trees. We describe a bijection between binary trees
with n nodes and sequences of n pairs of parentheses. There are many such
bijections, of course. For example, see [4] and [6]. The one we give has

3

the advantage of naturally extending to stack words and stack-sortable
words. We do this recursively. The empty tree corresponds to zero pairs of
parentheses; that is, the empty sequence. A tree of one node corresponds
to the sequence (). A tree with more than one node corresponds to the
sequence L(R), where L is the sequence of parentheses corresponding to
the tree rooted at the left child of the root node and R is the sequence of
parentheses corresponding to the tree rooted at the right child of the root
node. Some examples are given in Figure 2.

((() (())))() () (() ((())))() (())

Figure 2: Binary trees and nested parentheses

The stack word associated with a binary tree T with n vertices can also
be realized by labeling the vertices of T with 1, 2, . . . , n using an inorder
traversal and then reading the labels using a postorder traversal. Call such
a word an inorder labeled, postorder read word for the tree T and denote
the permutation by [In : Post]T . (This idea is similar to that given in [4].)
We formalize this in the following proposition.

Proposition 1 There is a bijection between the inorder labeled, postorder
read words and stack words.

Proof: Since stack words are precisely the 312-avoiding permutations, we
show that a word is inorder labeled, postorder read if and only if it is 312-
avoiding. In a binary tree, we’ll say a is a right descendant of b if the node
labeled a is in the subtree rooted at the right child of the node labeled b.
Left descendant is similarly defined.

Suppose π is a permutation with a 312 subsequence. Hence there exist
i, j, k where i < j < k with π(j) < π(k) < π(i). Now if π(j) < π(i) on
an inordered labeled tree, then one of the three situations hold: (1) π(i)
is a right descendant of π(j), (2) π(j) is a left descendant of π(i), or (3)
there is some node x where π(i) is a right descendant of x and π(j) is a left
descendant of x. These three situations are pictured in Figure 3.

4

(i)π

(j)π (i)π

(j)π (j)π (i)π

(1) (2)

x

(3)

Figure 3: Possible trees for 312 subsequence

But if i < j in the postorder output, only situation (1) can hold. Now,
restricting our attention to the situation (1), if π(j) < π(k) < π(i) either
(a) π(k) is a right descendant of π(j) and π(i) is a right descendant of π(k),
or (b) π(k) is a left descendant of π(i). These are pictured in Figure 4.

(j)π

(i)π

π(k)

(j)π

π(k)

(i)π

(b)(a)

Figure 4: Possible trees if π(j) < π(k) < π(i)

But in postorder output, (a) yields the order π(i), π(k), π(j) and (b)
yields π(k), π(i), π(j). In either case, this is not the order desired (π(i),
π(j), π(k)). Thus, there is no binary tree T where [In : Post]T = π.

Now suppose π is a 312-avoiding permutation. We construct the binary
tree that is inorder labeled, postorder read that yields π. Since we have a
postorder read, label the root node π(n) (the last number in the permu-
tation). Due to the inorder labeling, the right subtree of π(n) will be all
nodes labeled π(k) with π(k) > π(n) and the left subtree of π(n) will be all
nodes labeled π(j) where π(j) < π(n). Let L = {π(j) : π(j) < π(n)} and
R = {π(k) : π(k) > π(n)}. We claim that if π(j) ∈ L and π(k) ∈ R, then
j < k. That is π(j) comes before π(k) in the permutation π. For otherwise
we have k < j < n and π(j) < π(n) < π(j), which is a 312 subsequence.

We now apply this construction recursively to L and R. Note a pos-
torder reading of the tree will output L, then R, and then π(n). 2

Given the bijection between binary trees and nested parentheses noted
before this proposition, one can see there is also a bijection between nested

5

parentheses and stack words.

If π is a stack word, call the binary tree T such that [In : Post]T = π
the InPost tree of π. We give an example in Figure 5 of the conversion
from a stack word to an inorder labeled, postorder read tree, as given in
the proof of Proposition 1.

4

5
1

3
2

root

L

R

23154 {2 3 1}{5}{4}

Figure 5: 312-avoiding sequence to InPost tree

Note that if [In : Post]T = π and we label the nodes of the same binary
tree T inorder with the labels π−1, then a postorder reading of the nodes will
yield the nodes in sorted order 1, 2, . . . , n. We observed this phenomenon
before when we noted that the same stack operations sort π−1 as create π.

One can realize π−1 by labeling the nodes of the InPost tree of π with
1, 2, . . . , n using a postorder labeling and reading the labels in an inorder
traversal. (Similar to our previous notation, we’ll denote such a permuta-
tion by [Post : In]T .) We illustrate with the InPost tree of π = (23154) in
Figure 6.

= π−1

1
2

3 4

5

1 2 5 43

T postorder labeled inorder read

Figure 6: Postorder label, inorder read

This is true since if we label the InPost tree of π using a postorder
labeling, then the label π(i) in the original labeling is replaced by i in the
new labeling for each i. Thus each i in the original inorder labeling will be
replaced by π−1(i). Now reading the new labels using an inorder traversal
will produce labels in the order π−1(1),π−1(2),π−1(3),. . . , π−1(n).

6

3 Stack-sortable Words and Preorder Traver-
sals

In light of the above proposition, it is natural to ask what is the permutation
that results from an inorder labeled, preorder read tree. Adopting notation
similar to above, we denote a permutation obtained in this way by [In :
Pre]T . The following proposition answers this, which has been noted in
section 2.3.1, exercise 6 of [9] and further exploited in [13] and [12].

Proposition 2 There is a bijection between the inorder labeled, preorder
read words and stack-sortable words.

Proof: The proof is similar to the proof of Proposition 1, noting that stack-
sortable words are precisely those 231-avoiding permutations. When show-
ing that a 231-avoiding permutation, ρ, can be realized as an inorder la-
beled, preorder read tree, we label the root with ρ(1), the leftmost number
of the permutation, and note that all ρ(j) with ρ(j) < ρ(1) come before all
ρ(k) with ρ(k) > ρ(1). As before, we construct the tree recursively. 2

In Figure 7 we illustrate by constructing the inorder labeled, preorder
read tree for the stack-sortable word (31254). The reader should note that
the tree constructed in this manner does not reflect the stack operations
necessary to sort the stack-sortable word in a straightforward way. Indeed,
the tree structures look very different; compare the trees in Figures 6 and
7. Furthermore, if ρ is a stack-sortable word and T is the binary tree so
that ρ = [In : Pre]T , then the permutation [Pre : In]T will be the stack
word ρ−1. (See Corollary 1 in Section 5.)

3

1

2 4

5
3 1 2 5 4 {3}{1 2}{5 4}

L
Rroot

Figure 7: 231-avoiding permutation to InPre tree

The conversion of a stack word to a preorder labeled, inorder read tree
will be used in following sections and so we will illustrate how this tree
is constructed directly from the stack word. ([13] and [12] give a similar
construction for InPre trees from stack-sortable words.) Note that since T
will be preorder labeled, the root node must be labeled with 1. Those values

7

in the stack word to the left of 1 will comprise the left subtree while those
to the right of 1 will comprise the right subtree. We apply this technique
recursively to each subtree, labeling the root with the smallest number in
the subtree. We illustrate this conversion on the stack word (23154) in
Figure 8.

L
Rroot

23154 {2 3}{1}{5 4}

1
2

3 5

4

Figure 8: Stack word to PreIn tree

If π is a stack word, we call the binary tree T such that [Pre : In]T = π
the PreIn tree of π.

4 Counting Permutations that are both Stack

Words and Stack-sortable Words

Rotem [12] counted the number of permutations on {1, 2, . . . , n} that are
both stack words and stack-sortable words, but his proof was difficult and
required advanced graph theory techniques and terminology such as in-
terval and permutation graphs. The characterization of stack words on
{1, 2, . . . , n} as a permutation [Pre : In]T for some binary tree T with n
nodes, as noted in the last section, allows us to perform this count easily.
Since a stack word that is also stack-sortable is a stack word that is 231-
avoiding, we need only characterize those trees T where [Pre : In]T have a
231 subsequence. We then will be able to count the remaining trees with n
nodes.

Note that [Pre : In]T has a 231 subsequence if and only if there is a left
elbow subtree (as shown in Figure 9) in T . The proof of this follows along
lines similar to the proof of Proposition 1 and will not be included here.
Thus to count the number stack words of length n that are 231-avoiding,
we count binary trees with n nodes with no left elbows.

This can be done by first considering the binary tree of n nodes where
every node (except the bottom one) has exactly one right child, as shown
in Figure 9. We label these nodes 1, 2, . . . , n from top to bottom. Now any

8

tree without left elbows can be realized by choosing a subset of nodes from
{2, 3, . . . , n}. If node i is chosen, it becomes the left child of node i−1. For
example, let n = 7 and suppose {3, 4, 7} is the chosen set. The resulting
tree (with labels) is illustrated in Figure 9.

1
2

3
4 5

67

1

2

3

n

Figure 9: Left elbow, Tree with all right children, Tree with nodes {3, 4, 7}
chosen to be left children

Clearly, then, there is a one-to-one correspondence between subsets of
{2, 3, . . . , n} and the binary trees with n nodes and no left elbows. Specif-
ically, there are

(
n−1

k

)
binary trees with no left elbows with exactly k left

children. Thus, we the following.

Proposition 3 There are

n−1∑

k=0

(
n − 1

k

)
= 2n−1

permutations of {1, 2, . . . , n} that are both 312-avoiding and 231-avoiding.

5 Labeling and Reading Trees

In previous sections we have seen the correspondence between 312-avoiding
permutations (stack words) and InPost and PreIn permutations. Likewise
we’ve seen correspondence between 231-avoiding permutations and PostIn
and InPre permutations. For permutations obtained from the same tree,
there is a nice cancellation when multiplying permutations. For example,
for a binary tree T , [Pre : In]T [In : Post]T = [Pre : Post]T . (We multiply
permutations right-to-left.) Indeed it is true that [X : Y]T [Y : Z]T = [X :
Z]T for any choice of In, Pre, Post as values for X , Y and Z.

Proposition 4 For a given binary tree T , [X : Y]T [Y : Z]T = [X : Z]T
for any choice of In, Pre, Post as values for X, Y and Z.

9

Proof: We will show that [Pre : In]T [In : Post]T = [Pre : Post]T for any
binary tree T . Other choices for X , Y and Z follow in a similar manner.
We denote Tin, Tpre and Tpost to be the tree T with nodes labeled 1, 2, . . . , n
in an inorder, preorder and postorder traversal, respectively.

Note the following: (1) If π = [In : Post]T , then π(i) is the label of
the node of Tin corresponding to the node of Tpost with label i. (2) If
σ = [Pre : In]T , then σ(j) is the label of the node of Tpre corresponding
to the node of Tin with label j. (3) If ρ = [Pre : Post]T , then ρ(k) is the
label of the node of Tpre corresponding to the node of Tpost with label k.

So, if σ = [Pre : In]T , π = [In : Post]T and ρ = [Pre : Post]T , then
σ(π(i)) is the label of the node of Tpre corresponding to the node on Tin

with label π(i). But π(i) is the label of the node of Tin corresponding to the
node of Tpost with label i. Hence σ(π(i)) is the label of Tpre corresponding
to the node of Tpost labeled i. But this is precisely ρ(i). 2

Corollary 1 If π = [X : Y]T for some binary tree T , then π−1 = [Y : X]T ,
for any choice of In, Pre, Post as values for X and Y .

6 Preorder labeled, Postorder read binary trees

For a given binary tree T there are nine different permutations [X : Y]T
that can be formed from various choices of X and Y from among In, Pre,
and Post. The trivial cases of X = Y (i.e., [Pre : Pre]) obviously yield
the identity permutation. We have explored the cases of [Pre : In]T , [In :
Pre]T , [Post : In]T , [In : Post]T and their relation to stack words and
stack-sortable words. The two remaining permutations, [Pre : Post]T and
[Post : Pre]T , possess some properties not seen in the other operators.

Proposition 5 For a binary tree T , the permutation [Pre : Post]T pro-
duces a stack word (that is, a 312-avoiding permutation).

The proof of this is similar to our previous proof that [In : Post]T is
a stack word and will not be given here. Note, however, that this propo-
sition does not propose a bijection between stack words and [Pre : Post]T
permutations, since clearly any permutation (on n items) obtained in this
manner must have π(n) = 1. Thus the stack words which can be generated
by [Pre : Post]T are a subset of all stack words which we will refer to as
PrePost words or PrePost permutations. Figure 10 shows an example of two
different preorder labeled, postorder read trees that yield the permutation
(3241).

10

1

2

3

4

1

2

3

4

Figure 10: Binary trees with PrePost permutation (3241)

The key observation concerns nodes with one child. Notice that switch-
ing the left and right position of a parent’s only child has no effect on the
outcome of a [Pre : Post]T permutation. Indeed, this is the only way two
different binary trees can produce the same PrePost word. In fact, this
characterizes full binary trees (that is, all nodes have either 0 or 2 children)
if and only if the permutation [Pre : Post]T can be obtained in this manner
uniquely from T :

Proposition 6 T is a full binary tree if and only if there is no other binary
tree T ′ such that [Pre : Post]T ′ = [Pre : Post]T .

Proof: Suppose T is a full binary tree. Without loss of generality, assume
T has n > 1 nodes and π = [Pre : Post]T . Then the root node has two
children. Let π(n) be the label of the root, π(i) be the label of a node in
the left subtree of T , and π(j) be a label of a node in the right subtree of
T . Then π(n) = 1, i < j (since π is postorder read), and π(i) < π(j) (since
π is preorder labeled). If T ′ were another preorder labeled, postorder read
binary tree with π = [Pre : Post]T ′ , then π(i) would necessarily be a label
of a node in the left subtree of T ′ and π(j) would be a label of a node in
the right subtree of T ′. Thus the left subtrees of T and T ′ have exactly the
same number of nodes with the same set of labels. Likewise for the right
subtrees of T and T ′. Applying this reasoning inductively to those left and
right subtrees, we see that T and T ′ are isomorphic as binary trees (when
left and right children are differentiated).

Conversely, if T is not full, then there is at least one node with exactly
one child. Pick one such node. Moving the child of that node from right to
left or vice versa will yield the same PrePost permutation. 2

We now show we can distinguish PrePost permutations from other stack
words. PrePost words satisfy the following condition, which we call Condi-
tion P.

A permutation π of 1, 2, . . . , n satisfies Condition P if

1. π is 312-avoiding,

11

2. π(n) = 1, and

3. if π(i) = π(j)+1, where j < i, then π(i+1) is the largest integer less
than π(i) not included in {π(1), π(2), . . . , π(i)}.

Now suppose that π = (π(1) π(2) · · · π(n)) and π(i) = 2. Let L =
(π(1) · · · π(i)) and R = (π(i + 1) · · · π(n − 1)). (Note that R might be
empty.) Then we can write π = LR1, thinking of π as a sequence of
integers. For example, if π = (4 5 3 6 2 8 9 7 1), then L = (4 5 3 6 2) and
R = (8 9 7).

Before showing that Condition P characterizes a PrePost permutation,
we offer some useful lemmas:

Lemma 1 If π satisfies Condition P, and we write π = LR1, then all
numbers in L are less than all numbers in R.

Proof: If not, then π is not 312-avoiding. 2

Lemma 2 If π satisfies Condition P, then π(n−1) = i+1, where π(i) = 2.
That is, π(n − 1) is the smallest number in R.

Proof: L contains the integers 2, 3, . . . , i and R contains the integers
(i + 1), . . . , n. Let π(k) = i + 1. Then π(j) = i for j < i < k. Condi-
tion P requires that π(k + 1) = 1. 2

Lemma 3 Suppose π satisfies Condition P, and we write π = LR1. The
previous two lemmas recursively hold for blocks L and R. That is L (and R)
can be partitioned as ABm, where m is the smallest number in L (or R),
the last element of A is m + 1, all elements of A are less than all elements
of B (which might be empty), and if B 6= ∅ then the smallest element of B
is the last one. This can be applied recursively to A and B.

The proof of this lemma follows the proofs above.

We are now ready to prove that Condition P characterizes a PrePost
permutation:

Proposition 7 A permutation satisfies Condition P if and only if it is a
PrePost permutation.

Proof: Suppose π satisfies condition P. We construct a binary tree T where
[Pre : Post]T = π. Since π = LR1, label the root node of the binary

12

tree with 1. The left subtree will be the [Pre : Post] tree for L and the
right subtree will be the [Pre : Post] tree for R. Repeat recursively on
the partitioning of L and R as noted in Lemma 3. We illustrate on the
permutation (4 3 5 2 8 7 6 1) in Figure 11. Here, L = (4 3 5 2) and R = (8 7 6).

1 1

2

L R
3

6

7

8

5

4

Figure 11: PrePost tree construction

Now suppose that π = [Pre : Post]T for some binary tree T . Clearly
π(n) = 1 and we have shown that π is 312-avoiding in Proposition 5.
Suppose π(i) = π(j) + 1 where j < i. Since j < i, then in a postorder
traversal of a preorder labeled tree T either (1) π(j) is a descendant of
π(i), or (2) π(j) and π(i) have a common ancestor π(k) with π(j) being
a left descendant of π(k) and π(i) being a right descendant of π(k). But
π(i) > π(j) which eliminates possibility (1). So, let’s assume (2).

Now since π(i) = π(j) + 1, this means node π(i) is labeled immediately
after node π(j) in a preorder labeling of T . Thus π(i) must be the right
child of node π(k) (and so π(k) < π(i)). Furthermore, all the preorder
labels in the left subtree of node π(k) are the set {π(k) + 1, . . . , π(i) − 1}.
That is, π(j) = π(i) − 1. And so node π(k) is the next node visited after
node π(i) in the postorder traversal of T and is indeed the largest integer
less than π(i) not yet used. 2

It is straight forward to construct a recurrence relation which counts
the number of these special PrePost words:

Proposition 8 For trees with n nodes, the number of n-length PrePost
words is given by:

Pn =
n−1∑

i=1

PiP(n−1)−i

Notice that this recurrence is nearly identical to that of the Catalan
Sequence, differing only in the lower limit of the summation; i sums from
0 to n − 1 for Catalans.

13

Proof: The constructive proof of this uses induction. Clearly, P0 = P1 = 1.
Assume that the equation for Pn holds for values of n ≤ m. We show how
to construct trees with m + 1 nodes that generate different stack words.

After accounting for the root node, there are m more nodes for the
remaining tree. It is possible that all m of these are in the left subtree of
the root while 0 are in the right subtree. Or it is possible that m− 1 are in
the left subtree while 1 node is in the right subtree. And so on. However,
any tree with 0 nodes in the left subtree and m nodes in the right subtree
will produce the same stack word as m nodes in the left subtree and 0 nodes
in the right subtree.

There is only one way to generate a 0-length subtree (namely the empty
tree), thus P0 = 1. Thus we arrive at the desired summation. 2

The first few numbers in this sequence are: 1, 1, 1, 2, 4, 9, 21, 51, 127, 303.

7 An Equivalence Relation on Binary Trees
and an Equivalence on Stack Words

In previous sections we give two different binary trees associated with a
stack word π; namely, T1, the binary tree for which π = [Pre : In]T1 , and
the binary tree T2 for which π = [In : Post]T2 . In this section will describe
a transformation from T1 to T2. Of course the binary tree T2 is also a
PreIn tree for a stack word for which we can find an InPost tree via this
transformation. This will give rise to an equivalence relation on the set of
binary trees with n nodes.

7.1 Transformations Between Binary Trees

Given a stack word π, we can define a transformation between T1 and T2

as follows. Given a preorder labeling of T1, t(T1) produces a tree T2 with
an inorder labeling under the following conditions:

1. If i ∈ T1 is in the left subtree of j ∈ T1, then i ∈ T2 is in the right
subtree of j ∈ T2.

2. If i ∈ T1 is the right child of j ∈ T1, then j ∈ T2 will be the left child
of i ∈ T2.

Proposition 9 Given a stack word permutation π and binary trees T1 and
T2 such that π = [Pre : In]T1 = [In : Post]T2 , then t(T1) = T2.

14

Proof: Let π = [Pre : In]T1 = [In : Post]T2 . In T1, if k < j and π(k) > π(j)
then k appears in j’s left subtree. However, in T2, if k < j then k appears
in j’s right subtree, which satisfies condition (1) of the transformation t.

Now, if π(j) has a right child it must be labeled π(k) > π(j) and is in
position k > j. Also, every π(l) where j < l < k has π(l) > π(k) since each
π(l) would be in π(k)’s left subtree in T1. In tree T2, since π(j) < π(k)
and we’ve labeled T2 inorder, π(j) is either in π(k)’s left subtree or π(k)
is in π(j)’s right subtree. Since T2 is traversed postorder, π(k) would be
traversed before π(j) if π(k) is a descendant of π(j). Thus π(j) is in the
left subtree of π(k) in T2. Further, since j < l < k and π(l) > π(k), π(l) is
in the right subtree of π(k) in T2. Thus π(j) is the left child of π(k) in T2.
Thus t(T1) = T2. 2

There is a corresponding characterization of the inverse transformation
for t from T2 to T1 where [In : Post]T2 = [Pre : In]T1 , but we leave the
details to the reader. Likewise, there are corresponding transformations
between trees and related stack-sortable words. Again, we do not include
the details here.

Given a binary tree T , t gives a sequence of trees: T = T1, t(T1) =
T2, t(T2) = T3, Eventually, t(Tm) = T1 for some m. It follows that t
partitions the binary trees with n vertices and so gives rise to an equiv-
alence relation on the binary trees with n vertices. We show two such
equivalence classes in Figure 12. Note that the transformation t moves
counter-clockwise around these diagrams.

(2 1 4 3 5 6) (1 3 6 5 4 2)

(3 4 5 2 6 1)

(1 2 4 6 5 3) (3 2 1 5 4 6)

(4 5 3 6 2 1)

[In:Post]

[Pre:In]

[In:Post]

[In:Post]

[In:Post]

[In:Post]

[In:Post]

[Pre:In]

[Pre:In]

[Pre:In]

[Pre:In]

[Pre:In]

(1 2 4 3 6 5) (3 5 6 4 2 1)

[Pre:In] [In:Post]

[In:Post]

[In:Post]

[In:Post]

[In:Post]

[In:Post]

[Pre:In]

[Pre:In]

[Pre:In]

[Pre:In]

[Pre:In]

(4 3 2 5 1 6) (3 2 4 1 5 6)

(2 4 5 6 3 1) (1 3 2 6 5 4)

Figure 12: Two equivalence classes for n = 6

15

7.2 Notes on Distinguishing Equivalence Classes

It is not clear how to completely characterize these equivalence classes of
trees. But, certain properties are preserved within classes which offer some
insight. It is evident from the description of the transformation at the
beginning of this section that for a binary tree T with l nodes that are left
children and r nodes that are right children, then t(T) has r nodes that
are right children and l nodes that are right children. (The reader should
examine Figure 12 for examples of this.) Thus we have:

Proposition 10 If T is a binary tree with a different number of nodes that
are left children than nodes that are right children, then the number of trees
in the equivalence class of T is even.

The transformation t causes a sort of rotation and sliding motion as tree
T changes to tree t(T). The tree T is rotated counter-clockwise, causing
some edges to ascend instead of descend, making the resultant figure no
longer a tree. These offending portions are then slid down to the left. This
is illustrated in Figure 13 below. Donaghey [5] noticed a similar transfor-
mation between Catalan trees.

rotate slide

Figure 13: Transformation rotation

Consider this rotational view of the transformation t applied to the so-
called left elbow, right elbow, and fork subtrees of T (as shown in Figure 14).
Under t, left elbows become right elbows, right elbows become forks and
forks become left elbows. Again, the reader should examine the equivalence
classes in Figure 12 for examples.

Thus, each binary tree T has an ‘elbow-triple’ (l, r, f) giving the number
of left elbows (l), right elbows (r), and forks (f) of the tree. It is clear,
then, that the tree t(T) has an elbow-triple of (f, l, r). Thus, we have:

Proposition 11 If T is a binary tree with elbow-triple (l, r, f) where l, r,

16

left elbow right elbow fork

Figure 14: left elbow, right elbow, fork

and f are not all equal, the number of trees in the equivalence class of T is
a multiple of 3.

If the elbow-triple for a tree is (n, n, n) and there are the same number
of nodes that are left children as those that are right children, then the size
of the equivalence class of the tree may not be a multiple of 3 nor a multiple
of 2, as Figure 15 show.

Figure 15: An equivalence class with five trees.

Thus, we can say something about when two binary trees (with the
same number of nodes) are not in the same equivalence class. Let (L, R)
be the number of left children and right children in tree T . Call this the
left-right pair of T . Then t(T) has left-right pair (R, L). Thus, two trees are
not equivalent if there left-right pairs are not either identical or reversed.
Similarly, two trees are not equivalent if their elbow-triples are not rotations
of each other.

This is not a characterization of equivalence classes. It is easy to find
two trees with the same elbow-triple (or rotation) and same left-right pair
(or reverse) that are not equivalent. (We leave this as an exercise.) The
problem of characterization seems to be most difficult in situations when
the elbows and forks overlap, as in Figure 15.

17

7.3 Transformation Between Stack Words

We’ve just seen a transformation between two trees giving the same per-
mutation. Likewise, we’d like to find a transformation between two per-
mutations that are produced by the same tree, without referring to the
tree. Two permutations yielded by the inorder labeled binary tree T are
π1 = [In : Pre]T (a stack-sortable word or 231-avoiding permutation) and
π2 = [In : Post]T (a stack word or 312-avoiding permutation). Two stack
words created by the tree T are [In : Post]T and [Pre : In]T , the latter
being the inverse of [In : Pre]T , by Corollary 1.

We wish to show a transformation α between permutations [In : Post]T
and [Pre : In]T without resorting to using binary tree T . We do this
by focusing on the relationship between the postorder traversal and the
preorder traversal of the inorder labeled tree T . That is, we focus on
[In : Post]T = π1 and [In : Pre]T = π2. In Figure 16 is an example of an
inorder labeled tree and these permutations.

6

2

1
4

3 5

8

7

1π

π2

T

T
[In:Post] = (3 5 4 1 2 7 8 6) =

[In:Pre] = (6 2 1 4 3 5 8 7) =

Figure 16: Inorder labeled tree and permutations

A preorder traversal of T recursively reads the nodes of T as middle,
left, right and a postorder traversal reading recursively reads the nodes
of T as left, right, middle. Reversing the postorder reading process (i.e.
reading π2 right to left) yields a recursive reading of the nodes of T as
middle, right, left. Note that the only difference in a preorder traversal
of T and a “backwards” postorder traversal of T is that the “backwards”
postorder reads right before left. However, if T is labeled inorder, nodes
to the right of any subtree root of T have a larger label than those at the
subtree root or to the left of that root. Hence, decreasing sequences of
numbers in the “backwards” π2 correspond to left branches of the tree and
increasing sequences correspond to right branches. So to create π1 from
π2 we perform the following steps. First, read π2 right to left and find a

18

greedy decreasing sequence beginning at π2(n)and ending at 1 = π2(i). By
greedy we mean take the first available decrease as the permutation is read
right to left, skipping any values not decreasing. In our example, the first
right-to-left greedy decreasing sequence of (3 5 4 1 2 7 8 6) is (6 2 1).

Push onto a stack the skipped subsequences of contiguous skipped num-
ber in the permutation (including the unused leftmost subsequence to the
left of π2(i) = 1) as they are encountered. Now repeat this process on
the skipped subsequences visiting these subsequences in a last-in, first-out
manner. This exactly mimics how a preorder traversal reads the inorder
labeled tree. The skipped subsequences represent nodes corresponding to
right branches in the tree because they have larger labels than the node
previously read.

Stack of Subsequences

(7 8)

Stack of Subsequences

Stack of Subsequences

[In:Post] =
T

(3 5 4)

(7 8)

(35412786) (621)

(5)

(7 8)

(62143)

(621435)

Stack of Subsequences
(empty) = [In:Pre]T(62143587)

Figure 17: Creating an InPre permutation from an InPost permutation

A preorder traversal would revisit these skipped right branches starting
with the most recently skipped. Now to create [Pre : In]T , just take the
inverse of the permutation created by the above process. Namely create a
permutation that sends each π2(i) to the order number in which π2(i) was
read in the above process. Thus, in our example, since π2 = [In : Pre]T =
(6 2 1 4 3 5 8 7), we have [Pre : In]T = (3 2 5 4 6 1 7 8). Hence, we have shown
the following transformation α takes [In : Post]T to [Pre : In]T .

19

Proposition 12 Given an inorder labeled binary tree T , the following trans-
formation α takes π = [In : Post]T to [Pre : In]T :

1. Push the current sequence π(n), . . . , π(1) on stack P.

2. Set order to 1.

3. While P is not empty do

4. Pop the top subsequence off P and assign to S.

5. Find a greedy decreasing sequence S̄ in S and for each π(i)
in S̄, set α(π(i)) to order and increment order.

6. For each contiguous subsequence Sj of S that is skipped over
in forming S̄, push Sj onto P.

7. end while

8 Concluding Comments and Open Questions

We have described a natural equivalence among binary trees with n nodes
and have given some nice properties preserved in a given class. But the
natural open problem is to characterize equivalence classes of trees, as de-
scribed in Section 7. Likewise, characterize equivalence classes of stack
words (or stack-sortable words) as described in Section 7.

We have concentrated on stack words and stack-sortable words and their
relation to traversals of binary trees. There might be restrictions on the
structure of these trees that give rise to interesting restrictions on stack
words and stack-sortable words and vice versa. This could be a fruitful
area for future work.

References

[1] M. D. Atkinson. “Restricted Permutations,” Discrete Mathematics,
195 (1999), 27–38.

[2] Miklos Bona. “Permutations Avoiding Certain Patterns: The Case
of Length 4 and Some Generalizations,” Discrete Mathematics, 175
(1997), 55–67.

[3] Mikos Bona. “Exact Enumeration of 1342-Avoiding Permutations: A
Close Link with Labeled Trees and Planar Maps,” Journal of Combi-
natorial Theory, Series A, 80 (1997), 257–272.

20

[4] Mireille Bousquet-Mèlou. “Sorted and/or Sortable Permutations,” Dis-
crete Mathematics, 223 (2000), 23–30.

[5] Robert Donaghey. “Automorphisms on Catalan Trees and Bracket-
ings,” Journal of Comb. Theory, Series B, 29 (1980), 75-90.

[6] Shimon Even. Graph Algorithms. Computer Science Press, 1979.

[7] Ralph Grimaldi. Discrete and Combinatorial Mathematics, 3rd edition.
Addison-Wesley, 1994.

[8] O. Guibert. “Stack Words, Standard Young Tableaux, Permutations
with Forbidden Subsequences and Planar Maps,” Discrete Mathemat-
ics, 210 (2000), 71–85.

[9] Donald E. Knuth. The Art of Computer Programming: Volume 1.
Addison-Wesley, 1997.

[10] D. Marinov and R. Radoicic. “Counting 1324-Avoiding Permutations,”
The Electronic Journal of Combinatorics 9(2) (2003) #R13.

[11] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences.
http://www.research.att.com/ njas/sequences/. Sequence A000992.

[12] D. Rotem. “Stack Sortable Permutations,” Discrete Mathematics, 33
(1981), 185–196.

[13] D. Rotem and Y. Varol. “Generating Binary Trees from Ballot Se-
quences,” JACM 25 (1978), 396–404.

[14] Zvedina E. Stankova. “Forbidden Subsequences,” Discrete Mathemat-
ics 132 (1994), 291–316.

[15] Richard Stanley. Enumerative Combinatorics, Vol 2. Cambridge Uni-
versity Press, 1999.

[16] Julian West. “Sorting Twice Through a Stack,” Theoretical Computer
Science, 17 (1993), 303–313.

[17] Julian West. “Generating the Catalan and Schröder numbers,” Dis-
crete Mathematics, 146 (1995), 247–262.

[18] Julian West. “Generating Trees and Forbidden Sequences,” Proceed-
ings of the 6th Conference on Formal Power Series and Algebraic Com-
binatorics, DIMACS France (1996), 363–374.

21

