

Kernel Methods for Image Processing

Dan George Bucatanschi

Project Advisor: R. Matthew Kretchmar
Department of Mathematics & Computer Science

Permission to make digital/hard copy of part or all of this work for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit
or commercial advantage, the copyright notice, the title of the work, and its date appear,

and notice is given that copying is by permission of the author. To copy otherwise, to
republish, to post on a server, or to redistribute to lists, requires prior specific permission
of the author and/or a fee. (Opinions expressed by the author do not necessarily reflect

the official policy of Denison University.)

Copyright, Dan George Bucatanschi, 2006

Kernel Methods for Image Processing

Dan George Bucatanschi

Department of Mathematics & Computer Science

Advisor: R. Matthew Kretchmar

We discuss the possibility for a computer to identify people and human features, such as
long hair and smiles, from photographs of human faces. These problems fall into the field
of supervised learning. We begin with a discussion of the broader problem of
classification and various ways in which it is traditionally solved. We introduce the
kernel and its use in solving problems. We then present various algorithms and the
methods they employ together with kernels to solve the supervised learning tasks.

We finish our discussion by presenting the results and conclusions of solving three tasks:
identifying a person out of photographs of several people, detecting photographs of
people with long hair, and finding photographs of smiling people.

Table of Contents

Chapter 1: Introduction ... 1

1.1 Overview ... 1
1.2 What Is Artificial Intelligence? ... 2
1.3 Supervised Learning.. 3

1.3.1 Perceptrons .. 4
1.3.2 Neural Networks ... 5
1.3.3 Kernel Methods ... 7

1.4 Problem Details and Technical Notations... 10
1.5 Previous Work... 10
1.6 Paper Outline... 11

Chapter 2: Kernels.. 13
2.1 Remapping Input Space to Feature Space... 13
2.2 Definition of a Kernel ... 15
2.3 The Direct Method .. 15
2.4 The Kernel Trick ...16
2.5 The Kernel Matrix...17
2.6 Examples of Kernels ...18

2.6.1 The Inner Product.. 18
2.6.2 Polynomials of Inner Products .. 19
2.6.3 The Gaussian Kernel ... 20

Chapter 3: Algorithms.. 23
3.1 Role of Kernels.. 23
3.2 Datasets ... 24
3.3 Distance Algorithms.. 25

3.3.1 Naïve Novelty Detector... 25
3.3.2 Parzan Window Classifier... 26
3.3.3 Fisher Linear Discriminant Classifier ... 27

3.4 Support Vector Machines.. 28
3.4.1 SVM Novelty Detector.. 29
3.4.2 SVM Maximum Margin Classifier ... 29

3.5 Principal Components Analysis .. 30
Chapter 4: Our Data... 33

4.1 Human Face Database... 33
4.2 Ratings... 34

Chapter 5: Face Recognition ... 37
Chapter 6: Feature Identification—Hair Style .. 59
Chapter 7: Feature Identification—Smiling .. 85
Chapter 8: Conclusions .. 101
Acknowledgments.. 103
Bibliography .. 105
Appendix A: Images... 107

 1

Chapter 1:
Introduction

1.1 Overview
Since the beginnings of Computer Science, researchers have been trying to

develop ways through which a machine can simulate certain human capabilities. The

recent advances in Artificial Intelligence (AI) coupled with the ever increasing speed of

computers and access to cheaper technology have made tasks such as computer speech

recognition, computer human face detection and identification, and even computer

aircraft piloting a possible reality, not an unimaginable future. Computer scientists,

psychologists and other researchers have been trying to understand and emulate the

human mind in various potentially useful applications.

In this paper we discuss the possibility for a computer to detect people and human

features, such as long hair and smiles, from photographs of human faces. We present the

various techniques we use, particularly the kernel methods we employ, and the different

algorithms with which we experiment. We start with an overview of the field of AI and

its subdivisions.

 2

1.2 What Is Artificial Intelligence?
Artificial Intelligence is a branch of Computer Science that tackles different

problems in a human- or biological-intelligence inspired way, and which relies on several

other branches of Computer Science as well as other fields ranging from Psychology to

Biology and Statistics. More concretely, AI solves problems heuristically in such areas as

planning, searching, information processing and controlling devices. AI includes genetic

algorithms, natural language processing, planning, searching, machine learning and

others. In this paper we focus on machine learning.

Machine learning is further subdivided into the following categories based on the

type of information available:

• Unsupervised learning. In this case the computer finds patterns without

any intervention or help from the outside [9]. Applications include

clustering of data and principal components analysis (PCA);

• Reinforcement learning. In this case for every generated solution, the

computer is given a score, with the ultimate goal of maximizing the score.

The score reflects how closely the solution achieves the goal of the

problem. Basically this trial and error approach involves several runs,

during which the algorithm searches for a solution that will earn the

highest score [18];

• Supervised learning. For this approach the computer learns from examples

given by a knowledgeable “teacher.” At the end of the learning session,

the goal is for the computer to return a correct solution on new, unseen

data.

The algorithms in this paper primarily fall under the umbrella of supervised learning.

 3

1.3 Supervised Learning
In supervised learning the data is represented as vectors. We usually have a set of

vectors X = { xi: i = 1..l } representing the input to the problem and a set of vectors

Y = { yi: i = 1..l } representing the associated desired output, where l is the number of

vectors in the dataset. We generally represent the data in pairs such as (xi, yi). For

example, if we want to train a machine to distinguish between pictures of apples and

oranges, then X is the set of pictures of apples and oranges (each picture is reformatted as

a vector), and Y is the set of associated labels for each picture such as y1 = 0, y2 = 1,

y3 = 1, y4 = 0, y5 = 1, and so forth, where 0 represents ‘orange’ and 1 represents ‘apple’.

Given the training data, the goal of supervised learning is to learn a function M

that maps each example input to the correct output, thus minimizing the sum

! "
i

ii yxM)(. Oftentimes the function M has a set of parameters ! as input so that we

have ii yxM a),(# . In reality, most supervised learning algorithms work by a priori

choosing a particular kind of function M and then automatically adjusting the parameters

! so that the mentioned sum is minimized.

Classification is a particular kind of supervised learning in which },...,{ 1 pi ccy $

where each cj is a category and there are p categories [5]. Binary classification is the case

where p = 2. The “apples and oranges” learning task is a binary classification task. An

example of a non-binary classification task is character recognition from handwritten

text. In this situation p = 62 (26 lower case letters, 26 upper case letters, and 10 digits).

Moreover, the data is represented as n-dimensional vectors. Thus, each training

and testing point nx %$ lives in an n-dimensional space.

 4

1.3.1 Perceptrons
In the beginnings of supervised learning, perceptrons were the fundamental

learning machines [5, 6, 7]. They are binary classification machines that use a weight

w = ! applied to the input to compute their output where nw %$ (see Figure 1.1).

The goal of the perceptron is to minimize the classification error ! "
i

ii yxM),(# for a

particular problem. For example in Figure 1.2 we have a set of 2-dimensional data points

xi for which the desired output }o,{+$iy . Visually, a perceptron would adjust the

weight w to find a line that separates the two categories of points. Moreover, the

perceptron has precise performance guarantees. This means that given a particular size of

the training set, the perceptron is expected to classify a particular percentage correct

output in the future, which can be computed just from the training data.

Figure 1.1. Overview of a Perceptron. Note: xi and w are vectors.

Input

n components of xi

M(xi) = sign (<x, w>)

Output

xi(1)

xi(2)

xi(3)

.

.

.
xi(n)

n components of w

w (1)
w (2)
w (3)

...
w (n)

 5

However, the perceptron can learn only linearly separable data, i.e. the decision

boundary is a straight line. For a data set distributed like in Figure 1.3, the perceptron’s

limitation would force it to misclassify several points.

1.3.2 Neural Networks
For some problems the perceptron is not adequate since many learning tasks need

to separate non-linearly separable data points. In other words, we need an algorithm that

is able to learn a non-linear function as seen in Figure 1.3. One such approach is the

neural network [6, 7]. It is actually composed of several perceptrons, linked in a

Figure 1.2. Linearly Separable Data Set with Line Separating the Two Types of Data.

Figure 1.3. Non-Linearly Separable Data Set with Line Separating the Two

Types of Data. Note the misclassification of the points.

 6

particular way such that the weights w = ! are applied to two ore more layers of

perceptrons (see Figure 1.4).

The weights of each link, wij, are learned similarly to the perceptron case, but usually

require more training example to be trained optimally. In fact, the number of weights in a

neural network increases exponentially with the number of dimensions n of the input

vectors xi. A larger number of weights requires more training examples before the

network learns the correct function. As a result, neural networks used with even modest-

sized input vectors often require many more training examples than are available.

Moreover, we do not have any performance guarantees for neural networks the way we

have for the perceptron. However, the main advantage of the neural network over the

perceptron is that it can learn non-linear functions (see Figure 1.5).

Figure 1.4. Overview of a Neural Network.

Input
xi

Output
M(xi)

1

2

3

4

5

6

7

8

w13, w14,
w15,..., w25,

w26, w27

w38, w48, w58,
w68, w78

 7

In order to minimize the number of examples to train a neural network, we remap

the dataset to feed into the network hand-crafted features. For example we can remap the

“apples and oranges” dataset so that color information is the most important feature, since

most oranges are orange and most apples are yellow, green or red. If we use the color

information as the new input to the neural network, then the network trains faster, i.e.

with fewer examples, and with higher classification accuracy. However, the process of

finding the best set of features is not automated and it becomes increasingly difficult with

larger sized problems.

1.3.3 Kernel Methods
We use kernel methods to deal with the neural network’s deficiencies and also to

keep its advantages. We discuss this topic more thoroughly in Chapters 2 and 3; however

for now we briefly present what kernel methods allow us to do. Kernels have the best of

both worlds: they are able to learn non-linear functions while they do so with a

reasonable number of training examples. Using a kernel function, we project the data in a

higher dimensional feature space that can potentially make the data linearly separable.

Thus, the number of training examples is smaller since we use training algorithms similar

Figure 1.5. Non-Linearly Separable Data Set with Curve Separating

the Two Types of Data.

 8

to those of perceptrons to learn the function M in this feature space. Moreover, one of the

kernels’ biggest advantages is that one can use several different kernel functions with the

same algorithm, and several different algorithms with the same kernel function. We are

able to quickly swap them around to run several experiments with little effort.

Thus, choosing a function ii yxM a),(# representing the supervised learning

algorithm is a two step process: first we choose a kernel function, and then we choose an

algorithm that uses the kernel function and learns the set of parameters !. Different

kernel functions specify different distance relationships, and implicitly features, between

the input vectors, while different algorithms use the distance information from the kernel

functions to learn the parameters ! that determine the final function M. We present kernel

functions more thoroughly in Chapter 2 and the algorithms that use them in Chapter 3.

For now please refer to Figure 1.6 to understand how M is constructed.

In conclusion, kernel methods not only are easy to train and accurate but they are

also flexible to use for large complicated learning tasks. Because of their advantages, the

research community has heavily explored their use during the last decade.

Kernel

Function

Algorithm X Y

ii yxM a),(#

Figure 1.6. Overview of kernel approach to solving the supervised learning problem.

Chapter 2 Chapter 3

 9

The following table summarizes the three supervised learning classifiers:

 Advantages Disadvantages

Perceptrons • Precise performance guarantees

about future predictions

• Small number of examples required

to train

• Only work on linearly separable data

Neural

Networks

• Work on non-linearly separable data

• Work well in practice on difficult

problems such as speech recognition

and handwriting recognition

• Lack of exact performance

guarantees about future classification

performance

• May require large number of

training examples

• Not suitable for larger problems

• Hand-crafting features of input

space to improve performance not

automated and not always optimal

Kernels • Precise performance guarantees

• Small number of examples required

to train

• May work on non-linearly separable

data (also see disadvantages)

• Allow running several different

linear algorithms in very high

dimensional feature space

• Sometimes the high dimensional

feature space cannot linearly separate

data (also see advantages)

Table 1: Advantages and Disadvantages of Perceptrons, Neural Networks and Kernel Methods

 10

1.4 Problem Details and Technical Notations
In this paper we explore the possibility of computers to accomplish three tasks:

Identifying a person from a set of photographs of people, identifying people with long

hair versus people with short hair, and identifying people who are smiling versus people

who are not smiling. For all tasks we use a database of photographs of human faces.

The database is composed of 590 grayscale images at a 92x112 resolution of

people acting in different situations. Each photo is a column vector xi, where 1 & i & 590.

Depending on the supervised learning task we try to accomplish, there is a rating yi

associated with each xi, such as identifying a particular person, identifying people with

long hair versus people with short hair, and showing whether a person is smiling. The set

X = { xi: 1 & i & 590 } is the image database. Each algorithm learns a function

ii yxM a),(# . We compare the algorithms’ classification percentage for each task.

1.5 Previous Work
Mathematicians and statisticians have used kernels since the early 1960s. The

machine learning community embraced kernel methods only in the last decade. In 1962,

Parzan was among the first mathematicians to use an early notion of kernels [13].

Aizerman in 1964 recognized the “kernel trick” for avoiding lengthy computations in

high dimensional spaces. Boser in 1992 is generally credited with the creation of Support

Vector Machines (SVMs) [2]. He was among the first machine learning researchers to

use the idea of a kernel to form a feature space. At the time, neural network research was

popular and people were struggling with the idea of crafting feature spaces for neural

network learning problems. Several years later, in 1997, Scholkopf found that kernels

could be used to increase support vector machine (SVM) applications in non-linear

 11

domains [15, 17]. Soon after, the flood gates opened in terms of research with kernels

applied to many known algorithms.

Historically, the three primary algorithms for face detection and feature

identification have been Principal Components Analysis (PCA), Independent Component

Analysis (ICA) and Linear Discriminant Analysis (LDA). These algorithms and

techniques implement linear transformations (shearing, rotations and scaling). PCA is

also known as eigen-value decomposition and Karhunen-Loeve transformation. PCA

works by finding a new basis for a dataset such that the basis vectors are sorted by

maximizing the variance in the data [4, 12]. ICA finds a new basis for the data such that

the statistical dependencies in the data are minimized [1, 4]. LDA finds a basis such that

the basis vectors are most capable of discriminating between the training categories [4,

10, 11]. Moreover, Support Vector Machines (SVMs) are used to find the hyper-plane

that maximizes the distance separating the categories of points. Kernel methods can be

combined with any of the above approaches in addition to any number of other

algorithms to allow for non-linear transformations of the data. Due to the simplicity and

performance of kernel methods, the research community has embraced them during the

last four years. Thus, there have been hundreds if not thousands of papers published on

face recognition and feature detection, mostly during the last decade when computers

became powerful enough and algorithms sophisticated enough [3].

1.6 Paper Outline
Throughout the rest of the paper we discuss in detail how we can solve certain

problems regarding human faces using several kernel methods. In the Kernels chapter we

discuss what kernels are, their properties, and how they help us solve some interesting

 12

problems. The Algorithms chapter deals with the algorithms we employ with our kernels

and what they allow us to achieve. Chapter 4, Our Data, explains how we collected and

rated the images in our database and what format we use to represent them. Chapters 5, 6

and 7 present our experiments, their goal and their results, while in the last chapter we

discuss the overall conclusion and mention some questions for future research.

 13

Chapter 2:
Kernels

To review, we have classification problems for which we have to learn a function

M that best maps the input to a desired output. In our case, the dimensionality of the input

space is high, as we have 92x112 = 10304 pixels for each image, so each image n
ix %$,

where n = 10304. For the tasks typical of face and feature recognition, the points or

images are not linearly separable in input space. As stated in the previous chapter, we

need the input vectors to be linearly separable so we can use linear algorithms to learn the

categories. Kernels are an automatic method to linearly separate the input data so that we

can train linear algorithms on it.

2.1 Remapping Input Space to Feature Space
For almost all tasks we need a method to remap the input space into a feature

space F that will hopefully make the data linearly separable (see Figure 2.1). In other

words, we need a mapping ' defined as

() Fxx $'' a: . (2.1)

For Neural Networks, researchers typically handcraft the mapping ' using expert

domain knowledge. This step is usually necessary to reduce the dimensionality of the

 14

input space so that the Neural Network does not require a large number of training

samples.

Feature spaces with kernel methods are different. First the feature space is not

handcrafted. Instead it is determined by the selection of a kernel. Different kernels

implicitly indicate different feature spaces. Second, the feature space is usually of a much

higher dimensionality so that the data is more easily linearly separable.

The performance of kernel methods depends on how easy it is to linearly separate

the data and also the algorithm employed to learn the separation. The choice of the right

kernel for a particular data distribution is crucial in making the data linearly separable. In

section 2.3 we see how a particular kernel can linearly separate in feature space a

particular kind of data distribution in input space.

Figure 2.1. The function ' remaps the input data into

a feature space where it is linearly separable.

Input Space Feature Space

'

 15

2.2 Definition of a Kernel
Definition of a kernel: A kernel is a function k that for all nzx %$, satisfies

() () ()zxzxk '' ,, = , (2.2)

where ' is defined in (2.1) [14].

Intuitively a kernel is a function that computes how similar two vectors are. The

closer the vectors are to each other the higher the value of the kernel for those two

vectors. Formally a kernel is a mapping from nn %×% to % given by () ()zxkzx ,, a ,

where nzx %$, and () %$zxk , .

A special example of a kernel function of two vectors is the dot product:

() zxzxk ,, = . (2.3)

Note that () xx =' in this case. Thus this kernel function computes distances in input

space rather than feature space.

2.3 The Direct Method
The direct method is one approach to computing the kernel function [14, 16]. As

an example consider a two-dimensional input space 2%(X and a feature mapping

3
21

2
2

2
121)2,,()(),(: %=$== Fxxxxxxxx '' a . (2.4)

We compute the kernel function for this feature mapping in the following way:

2121
2
2

2
2

2
1

2
1

21
2
2

2
121

2
2

2
1

2

)2,,(),2,,(

)(),(),(

zzxxzxzx

zzzzxxxx

zxzxk

++=

=

= ''

.

(2.5)

Thus, we compute ()x' , then ()z' , and then compute their dot product. The problem

with this method is the number of calculations. If ' is a mapping from a lower

 16

dimensional input space to a very high dimensional feature space, the computations of

()x' and ()z' , and their dot product may require a very long time to finish.

The function ' in 2.4 maps the data in Figure 2.2 from its input space on the left

to the feature space on the right. Although the feature space is technically three-

dimensional, we represent it in two dimensions for simplicity of visualization. Note how

the data becomes linearly separable in feature space. The equation of the ellipse (in input

space) that forms the decision boundary is linear in feature space. This is the critical role

that kernels play in classification tasks.

2.4 The Kernel Trick
There is a different approach to computing the kernel function that speeds up

computation time considerably. Consider the same two-dimensional input space 2%(X

and feature mapping (2.4). Then according to (2.5) the kernel function is given by

2121
2
2

2
2

2
1

2
1 2),(zzxxzxzxzxk ++= .

Note that

Figure 2.2. Linearly separating the data using the mapping ' defined in 2.4.

Input Space Feature Space

'

 17

22
22112121

2
2

2
2

2
1

2
1 ,)(2 zxzxzxzzxxzxzx =+=++ ,

and hence

2,),(zxzxk =

is a kernel function for the feature mapping ' . The last computation is clearly much

faster than computing the coordinates of each vector in feature space and then taking the

dot product. The kernel trick allows us to avoid computing the coordinates in feature

space of each input vector explicitly and it gives the result directly into the feature space

[14, 16].

Also note that the feature space is not uniquely determined by the kernel function.

For

4
2121

2
2

2
121),,,()(),(: %=$== Fxxxxxxxxxx '' a

we have the same kernel function 2,),(zxzxk = . For simplicity we usually choose a

particular kernel function and consider one of the feature mappings for that kernel

function as our feature space.

2.5 The Kernel Matrix
To simplify data representation and also to better visualize kernels, we make use

of the kernel matrix notation. Given a finite dataset { } n
lxxS %)= ,...,1 , we represent all

possible values of the kernel function for the dataset in the following kernel matrix

notation:

 18

() () () ()
() () () ()
() () () ()

() () () ()*
*
*
*
*
*

+

,

-
-
-
-
-
-

.

/

=

lllll

l

l

l

xxkxxkxxkxxk

xxkxxkxxkxxk
xxkxxkxxkxxk
xxkxxkxxkxxk

K

,...,,,
...............
,...,,,
,...,,,
,...,,,

321

3332313

2322212

1312111

 and

()jiij xxkK ,= , where i, j = 1..l.

Moreover, the algorithms from Chapter 3 use the kernel matrix to improve

performance by avoiding the re-computation of the kernel function on the input data.

2.6 Examples of Kernels

2.6.1 The Inner Product
We have already seen this kernel in section 2.2:

() jiji xxxxk ,, = .

This is the simplest kernel function and it can be used with algorithms to learn on linearly

separable data where the feature space is the input space. The reason is that the feature

mapping function ' (x) = x is just the identity function.

In Figure 2.3 we represent a dataset composed of 100 elements and in Figure 2.4 the

0 20 40 60 80 100 120 140 160
50

60

70

80

90

100

110

120

130

140

Figure 2.3. 100 2-dimensional dataset.

 19

kernel matrix associated with the above kernel function and dataset represents a picture

for which each pixel is the corresponding value of the kernel matrix. In the kernel matrix

the points are sorted according to their x-axis.

2.6.2 Polynomials of Inner Products
The general form of these kernels is:

() ()mjiji cxxxxk += ,, ,

where m and c are parameters. When m = 1 and c = 0 we have the degenerate case of the

inner product. We have already seen the case when m = 2 and c = 0:

() 2
,, jiji xxxxk = . (2.6)

Polynomial kernels allow working in a higher dimensional space, such as the

feature space given by (2.4). As we have seen in Figure 2.2, by mapping the input data

into these higher dimensional feature spaces we are sometimes able to make the data

linearly separable. In Figure 2.5 we depict the kernel matrix for the kernel function (2.6)

for the dataset in Figure 2.3.

Figure 2.4. Inner product kernel of dataset.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

 20

2.6.3 The Gaussian Kernel
This kernel function is:

()
00
0

1

2

33
3

4

5 "
"= 2

2

2
exp,

6
ji

ji

xx
xxk ,

where 0>6 is called the width parameter. Note that 1)0exp(),(==xxk . The Gaussian

kernel specifies an infinite-dimension feature space where higher order dimensions decay

faster than lower order dimensions.

In Figure 2.6 we show the picture representation of the Gaussian kernel matrix

with a width 10=6 for the dataset in Figure 2.3, and in Figure 2.7 the same kernel but

with a width of 30=6 .

Figure 2.5. Squared inner product kernel of dataset.

Notice the similarity to the input space kernel.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

 21

Figure 2.6. Gaussian kernel with 10=6 .

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Figure 2.7. Gaussian kernel with 30=6 .

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

 22

So far we have seen how kernels implicitly define a feature space, how they can

be computed and how different kernel functions determine different feature spaces. In

Figure 2.8 we show again the overall kernel method approach to solving the supervised

learning problem. In the next chapter we examine how algorithms use kernels and the

implicit feature mappings to learn the function ii yxM a),(# .

Kernel

Function

Algorithm X Y

ii yxM a),(#

Figure 2.8. Overview of kernel approach to solving the supervised learning problem.

Chapter 2 Chapter 3

 23

Chapter 3:
Algorithms

In this chapter we focus on the algorithms we use in our experiments. We start

with a review of how kernels are used in supervised learning algorithms, and then talk

about the way the data is divided in training and testing sets. We give a brief description

of each of the supervised learning algorithm and finally discuss an algorithm that helps us

to both visualize and remove noise from data. We give only brief, intuitive discussions of

each algorithm. For more information, see the respective chapters in [14].

3.1 Role of Kernels
The supervised learning algorithms we use require distances between points for

determining their “similarity” to one another. The distance between points can be

measured in the original input space, or in a different feature space. The advantage of

computing distances of points in feature space is that the data may be linearly separable.

We use the kernel functions to compute distances in feature space between all

points without explicitly computing the mapping to feature space ' . Given two vectors in

feature space ()x' and ()z' , we compute the distance between each of them by finding

the norm of the vector ()x' - ()z' .

 24

() () () () () ()
() () () () () ()
() () (),,,2,

,,2,

,2

zzkzxkxxk
zzzxxx

zxzxzx

+"=

+"=

""="

''''''

''''''

where on the last line we have used the substitution (2.2). This procedure relies on the

kernel trick in section 2.4. We are able to compute distances between vectors in feature

space, just by using the kernel function, thus avoiding the explicit, potentially time

consuming transformation ' .

By using kernel functions, the algorithms learn a function yxM a)(, where x is

the input vector and y is the desired categorization of x. The algorithms store two kernel

matrices to reduce running time by avoiding re-computation of the kernel function. One

matrix corresponds to points used to learn the function M, and another matrix is

corresponding to new points used to test the learned function M against the correct

classification. Thus, the data is divided into testing and training sets.

3.2 Datasets
The data for all supervised learning algorithms is divided into training sets and

testing sets. The training sets are composed of pairs of the form (x, y), where x represents

a training vector and y is the correct classification of x. The algorithms use the correct

category of each x to learn the function M, so that yxM =)(. The testing sets are of the

same form as the training sets, however y is used to compute the performance of the

algorithm by comparing the output of the algorithm on each testing vector x to the correct

classification y. The data should be distributed similarly in both the testing and training

sets so that the classification algorithm does not learn biases in the training set.

 25

3.3 Distance Algorithms
Distance algorithms use the distance information between points directly to learn

the function M and also to determine the classification of new points. We review three

algorithms here.

3.3.1 Naïve Novelty Detector
This algorithm requires the training set be composed of points from only the

category that needs to be distinguished from the other categories. The algorithm

statistically finds the center of mass and a radius of an encompassing hyper-sphere of the

training set such that the training points are included. The algorithm has an adjustable

parameter 7 , called a confidence parameter, to allow for extreme training points to be

excluded from the hyper-sphere. After the training stage, the hyper-sphere is used as a

boundary to decide if a testing point is novel, i.e. outside the hyper-sphere, or not (see

Figure 3.1).

Note that in order to decide the position of the center of mass as well as the

radius, the algorithm needs to know the distances between the training points. Moreover,

the distances between the testing points and the center of mass determine whether the

testing points lie outside the hyper-sphere, i.e. whether the distance to the center of mass

Figure 3.1. Naïve Novelty Detection: + denotes training points, o denotes testing points.

Note how some training points have been excluded from the hyper-sphere.

 26

of each testing point is bigger than the radius of the hyper-sphere. This is the purpose of

the distance information given by the kernel. By using a kernel instead of computing the

distances explicitly, the algorithm provides the same functionality in various feature

spaces as well as in input space.

3.3.2 Parzan Window Classifier
The training set for this algorithm is composed of two or more categories of

points. The goal of the algorithm is to learn to classify testing points into categories. The

algorithm computes the center of mass for each of the training categories and adjusts the

decision boundaries according to the number of points in each of these categories. Thus,

if a category has more points than others, the decision boundary is moved farther away

from the center of mass of that category in a manner similar to the prior probabilities in

Bayesian calculations. Every testing point has its distance to each of the center of mass

computed and then is categorized depending on which side of the decision boundaries it

is.

An example is given in Figure 3.2 using two categories in a 2D space. Notice how

the decision boundary is shifted slightly to the left of the half-way point because there are

more o’s than +’s. Every new point lying to the left of the decision boundary is

categorized as a +, while every point on the right of the boundary is categorized as a o.

 27

3.3.3 Fisher Linear Discriminant Classifier
This algorithm is similar to the Parzan Window Classifier, except that it also takes

into account the spread of the data in each category. Thus, if a category has a very high

density, the decision boundary is closer to the center of mass of the category. On the

other hand, if a category has many spread out points, the decision boundary is farther

away from the center of mass of the category to account for the high variance of the data,

and thus encompass future, probably highly variable testing points.

In Figure 3.3 we have two categories of data represented in a 2D space. Note that

the +’s are now many more but also more highly concentrated than the o’s. The figure

shows the difference between the Parzan Window Classifier and the Fisher Linear

Discriminant Classifier decision boundaries in this situation.

Figure 3.2. Parzan Window Classifier: Note the shift to the left of the decision boundary.

The solid dots indicate the centers of mass of each category.

 28

3.4 Support Vector Machines
Support vector machines (SVMs) are a class of algorithms that use only key

vectors from the training set to determine the decision boundary. These vectors are called

support vectors. The idea behind using only a subset of the training set to contribute to

the decision boundary is to limit the number of computations between the training vectors

and the testing vectors. If we determine the key training vectors for the decision

boundary, then we completely eliminate all the other vectors in the training set from the

computations involved when testing new points.

Moreover, one can exclude some extreme training vectors from the decision

making task, so that the decision boundary is not affected by extraneous, noisy data. The

amount of “sloppiness” is determined by a parameter 8 and thus the technique is called

the 8 -trick.

We review two algorithms that make use of support vectors.

Figure 3.3. Fisher Linear Discriminant Classifier (FLDC) vs. Parzan Window Classifier (PWC).

Fisher Parzan

 29

3.4.1 SVM Novelty Detector
This algorithm is similar to the Naïve Novelty Detector. It uses only support

vectors for its decision boundary, thus the boundary is tighter around the training points

and more easily fits the input data.

In Figure 3.4, note how the algorithm allows for excluding many training points

from the decision task, since only the support vectors are used for the testing of new

points. This procedure speeds up testing considerably, especially if the training set is

large.

3.4.2 SVM Maximum Margin Classifier
This algorithm finds the hyper-plane that best separates two classes of points. The

support vectors are the vectors from each category that directly influence the decision

boundary.

We provide an example in Figure 3.5. Note how only the support vectors are used

when testing for new points. They are the only vectors contributing to the decision

boundary.

Figure 3.4. SVM Novelty Detection: + denotes training points, o denotes testing points,

a solid dot denotes support vectors.

 30

3.5 Principal Components Analysis
Principal Components Analysis (PCA) is a technique by which data is linearly

remapped to a new basis that best captures the variance in the data [8, 14]. Usually, the

new basis vectors are ordered according to the variance of the data projected on that

vector. PCA performs a linear mapping from input space to this new basis:

nn
i xx %$%$ ~a

PCA is often used to reduce the dimensionality of the input space. We can use the

first k dimensions of x~ , nk &&1 , to capture most of the variance but have a smaller

number of dimensions. This procedure sometimes helps learning algorithms perform

better, since they can look only at the first k most “important” vectors.

Another use for PCA is for visualizing data. We make use of this technique to plot

2-dimensional vectors representing whole images. From n = 10304 dimensions, we

capture the highest variance of the data in the first k = 2 dimensions and we plot the

vectors after this transformation.

PCA is also used for denoising. Since many of the low-variance dimensions of x~

contain very little variance in the data, by intentionally excluding some of the

Figure 3.5. SVM Maximum Margin Classifier.

The solid dots indicate the support vectors.

 31

low-variance dimensions, we remove extraneous noise from the input data, thus

improving performance.

 32

 33

Chapter 4:
Our Data

4.1 Human Face Database
For our experiments we custom-built a database of images of various people’s

faces in several moods. Each photograph is an 8-bit grayscale image of 92 by 112 pixels

of the cropped face of a person. We have 590 such photographs. The first 200 pictures are

of 5 people, 40 pictures each, while the remaining 390 pictures are of 39 people, 10

pictures each. The people show different moods and face expressions that were acted

during the photo shoot as several situations were portrayed. The photos have a neutral

white background and are taken in a controlled light environment. They are represented

as column vectors in Matlab and they are all placed together in a 10304x590 matrix.

When used with the learning algorithms, the photos are divided into training and testing

sets depending on the task and the algorithm used.

The photos are arranged in sets of 10. Five people have four sets (4x10 = 40

pictures per person), while 39 people have one set each. Each photo in a series

corresponds to a particular situation. The following is the list of situations we presented

to the people:

1. Act as if you are in a happy mood (you are content with your life).

 34

2. Act as if you just heard something funny.

3. Act as if you are excited to leave tomorrow on the best vacation ever.

4. Act as if you received a bad grade today.

5. Act as if your favorite pet died.

6. Act as if you are mad at your supervisor for not treating your work fairly.

7. Act as if you are scared of darkness and you heard something weird

somewhere in the corridor.

8. Act as if someone just startled you to death and now you are catching your

breath.

9. Act as if you are indifferent and do not care much about the things around

you.

10. Make a funny face.

We present the whole database in Appendix A. The numbers of the above

situations correspond to the pictures within a set. Thus, the first picture in a set

corresponds to the first question, the second picture to the second question and so forth.

4.2 Ratings
We have a set of ratings from 1 to 10 showing how much each person is smiling

in each photo, 1 being not smiling at all and 10 being smiling very much or laughing. The

ratings are averages from several people who rated all or part of the image database. The

histogram of the ratings is presented in Figure 4.1. We use both a cut-off point of 6 and 8

in our experiments to see the differences in performance between them for the smiling

detection task.

 35

Figure 4.1. Histogram of smile ratings.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Rating

N
um

be
r o

f P
ic

tu
re

s

 36

 37

Chapter 5:
Face Recognition

Our first set of experiments in the paper constitutes a face recognition task. The

goal of this task is to identify one particular person from a set of photos of various

people. We make references to several people from the database. Some pictures are

included here for convenience. For the full database of photos, please refer to Appendix

A.

Throughout our experiments we use the feature space defined by the Gaussian

kernel. In order to better visualize what happens to the data after remapping into feature

space we apply principal components analysis (PCA). Recall from section 3.5 that PCA

is a technique that remaps the data to a new basis that captures most of the variance in

each dimension. We use PCA in feature space as a visualization tool to map the data

down to a two-dimensional space. We choose the two dimensions that capture most of

the variance of the data so that we have a rough idea of the distances between the data

points.

For the face recognition task the dataset is composed of the first 200 images of the

database. To visualize the “position” of these images in feature space, we take the

dataset, map each image into the feature space determined by a Gaussian kernel with a

 38

width of 4000 and finally project it down onto the two dimensions that capture most of

the variance given by PCA. Figure 5.1 gives a rough idea of the distribution of this

dataset.

We conduct experiments for identifying Person 2 and Person 3. There are ten

experiments in total, five for identifying Person 2 and five for identifying Person 3.

Within a set of five experiments, each corresponds to one of the five algorithms we use:

Naïve Novelty Detection, Parzan Window Classifier, Fisher Linear Discriminant

Classifier, SVM Novelty Detection, and SVM Maximum Margin Classifier. We use a

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
x 108

!6

!4

!2

0

2

4

6

8
x 107

Persons 1!5 projected onto 2D space using PCA
from a Gaussian kernel space, width = 4000

x o * ! +

Figure 5.1. Distribution of Face Recognition dataset in Gaussian kernel space after PCA.

Person 1 Person 2 Person 3 Person 4 Person 5

 39

Gaussian kernel with widths of 3000, 4000 and 6000 throughout and a width of 2000 for

particular experiments.

For each experiment we provide the goal, the dataset used, the training set, the

testing set, the type of kernel, the algorithm used, and the set of parameters for the

algorithm. We present results for each set of parameters in a table specifying the kernel

width used, the classification percentage, the number of testing points, the number of

correct classifications, and a break down of false positives and false negatives. We

conclude each experiment with a discussion of the results.

We discuss major conclusions of the face recognition task at the end of the

chapter.

 40

Experiment 1. Naïve Novelty Detection for Person 2.

Purpose: Identify pictures of Person 2 from a set of pictures of various people.

Dataset: First 200 images of database (5 people with 40 images each).

Training Set: 20 images of Person 2, first 5 from each series of 10 (Negatives).

Testing Set: the 20 other images of Person 2 (Negatives) and 160 images of 4

other people (Positives).

Kernel: Gaussian kernel.

Algorithm: Naïve Novelty Detection.

Parameters: 01.0=7 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.1111 180 20 0 160

4000 0.1111 180 20 0 160

6000 0.1111 180 20 0 160

Notes: The algorithm classifies all pictures as being Person 2. We assume that the

very high dimensionality of the input space is affecting the algorithm in the training part,

so it forms a large radius that contains all training and testing points.

 41

Experiment 2. Naïve Novelty Detection for Person 3.

Purpose: Identify pictures of Person 3 from a set of pictures of various people.

Dataset: First 200 images of database (5 people with 40 images each).

Training Set: 20 images of Person 3, first 5 from each series of 10 (Negatives).

Testing Set: the 20 other images of Person 3 (Negatives), and 160 images of 4

other people (Positives).

Kernel: Gaussian kernel.

Algorithm: Naïve Novelty Detection.

Parameters: 01.0=7 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.1111 180 20 0 160

4000 0.1111 180 20 0 160

6000 0.1111 180 20 0 160

Notes: (Similar conclusion to Experiment 1). It seems the algorithm classifies all

pictures as being Person 3. We assume that the very high dimensionality of the input

space is affecting the algorithm in the training part, so it develops a very large radius that

contains all training and testing points.

 42

Experiment 3. Parzan Window Classifier for Person 2.

Purpose: Identify pictures of Person 2 from a set of pictures of various people.

Dataset: First 200 images of database (5 people with 40 images each).

Training Set: 100 images: first 5 images from each series (20 series in all).

Person 2 classified as +1 (Positive), rest of images classified as -1 (Negative).

Testing Set: 100 images: last 5 images from each series (20 series in all).

Kernel: Gaussian kernel.

Algorithm: Parzan Window Classifier.

Parameters: none.

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.20 100 20 80 0

4000 0.20 100 20 80 0

6000 0.20 100 20 80 0

Notes: The algorithm classifies all pictures as being Person 2. Here we have a

similar phenomenon as in Experiment 1 and 2.

 43

Experiment 4. Parzan Window Classifier for Person 3.

Purpose: Identify pictures of Person 3 from a set of pictures of various people.

Dataset: First 200 images of database (5 people with 40 images each).

Training Set: 100 images: first 5 images from each series (20 series in all).

Person 3 classified as +1 (Positive), rest of images classified as -1 (Negative).

Testing Set: 100 images: last 5 images from each series (20 series in all).

Kernel: Gaussian kernel.

Algorithm: Parzan Window Classifier.

Parameters: none.

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.20 100 20 80 0

4000 0.20 100 20 80 0

6000 0.20 100 20 80 0

Notes: (Similar conclusion to Experiment 3). The algorithm classifes all pictures

as being Person 3. Here we have a similar phenomenon as in Experiment 1 and 2.

 44

Experiment 5. Fisher Linear Discriminant Classifier for Person 2.

Purpose: Identify pictures of Person 2 from a set of pictures of various people.

Dataset: First 200 images of database (5 people with 40 images each).

Training Set: 100 images: first 5 images from each series (20 series in all).

Person 2 classified as +1 (Positive), rest of images classified as -1 (Negative).

Testing Set: 100 images: last 5 images from each series (20 series in all).

Kernel: Gaussian kernel.

Algorithm: Fisher Linear Discriminant Classifier.

Parameters: 1.0=9 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

2000 0.96 100 96 2 2

3000 0.95 100 95 5 0

4000 0.94 100 94 6 0

6000 0.92 100 92 7 1

Parameters: 01.0=9 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

2000 0.96 100 96 2 2

3000 0.95 100 95 5 0

4000 0.92 100 92 7 1

6000 0.91 100 91 8 1

 45

Notes: There does not seem to be any significant difference between 01.0=9

and 1.0=9 , but the latter does give slightly better results. Otherwise the algorithm is

performing quite well. A Gaussian kernel width of 2000 is the best. The two false

negatives are probably because Person 2’s face is turned very sharply from the regular

pose. The two false positives are likely due to a similar reason. Person 5 is facing in some

different direction and his vector representation may be closer to Person 2 in these two

instances (see Figure 5.2).

 False

Positives:
167 + 190 +

False

Negatives:
48 o 77 o

Figure 5.2. Experiment 5 misclassifications.

!2.8 !2.6 !2.4 !2.2 !2 !1.8 !1.6 !1.4 !1.2 !1
x 108

!1.5

!1.4

!1.3

!1.2

!1.1

!1

!0.9

!0.8

!0.7

!0.6

!0.5
x 108

Persons 1!5 projected onto 2D space using PCA
from a Gaussian kernel space, width = 2000

False Positives

False Negatives

 46

Experiment 6. Fisher Linear Discriminant Classifier for Person 3.

Purpose: Identify pictures of Person 3 from a set of pictures of various people.

Dataset: First 200 images of database (5 people with 40 images each).

Training Set: 100 images: first 5 images from each series (20 series in all).

Person 3 classified as +1 (Positive), rest of images classified as -1 (Negative).

Testing Set: 100 images: last 5 images from each series (20 series in all).

Kernel: Gaussian kernel.

Algorithm: Fisher Linear Discriminant Classifier.

Parameters: 1.0=9 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

2000 0.88 100 88 12 0

3000 0.89 100 89 11 0

4000 0.87 100 87 12 1

6000 0.86 100 86 13 1

Parameters: 01.0=9 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

2000 0.88 100 88 12 0

3000 0.89 100 89 11 0

4000 0.87 100 87 12 1

6000 0.86 100 86 12 2

 47

Notes: There is not a significant difference between 01.0=9 and 1.0=9 .

Otherwise the algorithm has average performance, considering that Person 3’s photos are

more varied than Person 2’s since she has her hair both pulled up and untied (see Figure

5.3 and Appendix A). A Gaussian kernel width of 3000 is the best. We have no or very

few false negatives but several false positives, which suggests the algorithm includes

more pictures than just of Person 3 in the decision boundary. The false positives that we

get are mostly photos of people looking in different directions or looking very different

than their normal pose, such as making a funny face or looking downwards or to their left

(see Figure 5.3).

10 x 48 o 60 o 130 ! 140 ! 150 !

False

Positives:

160 ! 166 + 167 + 190 + 197 +

 48

!2.8 !2.6 !2.4 !2.2 !2 !1.8 !1.6 !1.4 !1.2 !1
x 108

!10

!9

!8

!7

!6

!5

!4

!3

!2

!1

0
x 107

Persons 1!5 projected onto 2D space using PCA
from a Gaussian kernel space, width = 3000

Figure 5.3. Experiment 6 misclassifications. Arrows denote false positives.

 49

Experiment 7. SVM Novelty Detection for Person 2.

Purpose: Identify pictures of Person 2 from a set of pictures of various people.

Dataset: First 200 images of database (5 people with 40 images each).

Training Set: 20 images of Person 2, first 5 from each series of 10 (Negatives).

Testing Set: the 20 other images of Person 2 (Negatives) and 160 images of 4

other people (Positives).

Kernel: Gaussian kernel.

Algorithm: SVM Novelty Detection.

Parameters: 1.0,01.0 == 8: .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.91 180 165 15 0

4000 0.93 180 168 12 0

6000 0.95 180 171 9 0

Parameters: 1.0,1.0 == 8: .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.95 180 171 9 0

4000 0.97 180 175 5 0

6000 0.98 180 176 3 1

 50

Notes: The algorithm performs consistently better when 1.0=: as opposed to

0.01. For both settings a Gaussian kernel width of 6000 is best. For the best combination

of gamma and kernel width, the three false positives are Person 2 again looking in a

different direction (Image 48, 77) or being funny (Image 60). The only false negative is

Person 3 being startled (Image 118).

False

Positives: Image

48 o

Image

77 o

Image

60 o

False

Negatives: Image

118 *

Figure 5.4. Experiment 7 misclassifications.

0.5 1 1.5 2 2.5 3
x 108

!5

0

5

10
x 107

Persons 1!5 projected onto 2D space using PCA
from a Gaussian kernel space, width = 6000

False Positives

False Negative

 51

Experiment 8. SVM Novelty Detection for Person 3.

Purpose: Identify pictures of Person 3 from a set of pictures of various people.

Dataset: First 200 images of database (5 people with 40 images each).

Training Set: 20 images of Person 3, first 5 from each series of 10 (Negatives).

Testing Set: the 20 other images of Person 3 (Negatives) and 160 images of 4

other people (Positives).

Kernel: Gaussian kernel.

Algorithm: SVM Novelty Detection.

Parameters: 1.0,01.0 == 8: .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.91 180 163 17 0

4000 0.92 180 166 14 0

6000 0.93 180 168 12 0

Parameters: 1.0,1.0 == 8: .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.96 180 173 7 0

4000 0.98 180 176 4 0

6000 0.94 180 170 1 9

 52

Notes: The algorithm performs consistently better with 1.0=: as opposed to

0.01. A Gaussian kernel width of 4000 is best with 1.0=: . For the best combination of

gamma and kernel width, the four false positives we get are Person 3 looking different

from her normal pose.

False

Positives:
Image 88 * Image 98 * Image 110 * Image 118 *

Figure 5.5. Experiment 8 misclassifications.

0.5 1 1.5 2 2.5 3
x 108

!5

0

5

10
x 107

Persons 1!5 projected onto 2D space using PCA
from a Gaussian kernel space, width = 4000

False Positives

 53

Experiment 9. SVM Maximum Margin Classifier for Person 2.

Purpose: Identify pictures of Person 2 from a set of pictures of various people.

Dataset: First 200 images of database (5 people with 40 images each).

Training Set: 100 images: first 5 images from each series (20 series in all).

Person 2 classified as +1 (Positive), rest of images classified as -1 (Negative).

Testing Set: 100 images: last 5 images from each series (20 series in all).

Kernel: Gaussian kernel.

Algorithm: SVM Maximum Margin Classifier.

Parameters: 01.0=8 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.64 100 64 36 0

4000 0.80 100 80 20 0

6000 0.84 100 84 16 0

Parameters: 1.0=8 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.64 100 64 36 0

4000 0.80 100 80 20 0

6000 0.84 100 84 16 0

 54

Notes: There is no significant difference between 1.0=8 and 01.0=8 . The

algorithm seems to find too many support vectors no matter what the kernel width is. 43

SVs for width = 3000 and 23 better SVs for width = 6000. This probably leads to a

decision boundary that includes too many of the testing points. It makes sense since in all

test cases we have only false positives. The tendency seems to be that the fewer support

vectors, the better the classification, but even in the best scenario the classification

percentage does not go above 84%.

 55

Experiment 10. SVM Maximum Margin Classifier for Person 3.

Purpose: Identify pictures of Person 3 from a set of pictures of various people.

Dataset: First 200 images of database (5 people with 40 images each).

Training Set: 100 images: first 5 images from each series (20 series in all).

Person 3 classified as +1 (Positive), rest of images classified as -1 (Negative).

Testing Set: 100 images: last 5 images from each series (20 series in all).

Kernel: Gaussian kernel.

Algorithm: SVM Maximum Margin Classifier.

Parameters: 01.0=8 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.50 100 50 50 0

4000 0.62 100 62 38 0

6000 0.70 100 70 30 0

Parameters: 1.0=8 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.50 100 50 50 0

4000 0.62 100 62 38 0

6000 0.70 100 70 30 0

 56

Notes: There is no significant difference between 1.0=8 and 01.0=8 . The

algorithm seems to find too many support vectors no matter what the kernel width is. 55

SVs for width = 3000 and 35 better SVs for width = 6000. This probably leads to a

decision boundary that includes too many of the testing points. It makes sense since in all

test cases we have only false positives. The tendency seems to be that the less support

vectors, the better the classification, but even in the best scenario the classification

percentage does not improve beyond 70%. Comparing these results to Experiment 9, the

errors are higher for Person 3 than for Person 2 because Person 3 had more varied

pictures than Person 2 (see Figure 5.6). The algorithm makes the decision boundary

larger in order to include all pictures of Person 3, but this leads to including more false

positives as well.

 57

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
x 108

!6

!4

!2

0

2

4

6

8
x 107

Persons 1!5 projected onto 2D space using PCA
from a Gaussian kernel space, width = 4000

o *

Figure 5.6. Person 3’s vectors are more spread out than Person 2’s vectors.

Person 2: Person 3:

 58

Conclusions to Face Recognition Task:

The Face Recognition task is straightforward for the more complex algorithms,

such as Fisher Linear Discriminant Classifier, and SVM Novelty Detection. These

algorithms are able to identify a person with a correct classification percentage as high as

98%. The best is the SVM Novelty Detection, which consistently classified more than

90% of the testing images when identifying both Person 2 and 3. The SVM Maximum

Margin Classifier performs better than Naïve Novelty Detection and Parzan Window

Classifier, but it does not reach the high performance of Fisher Linear Discriminant

Classifier and SVM Novelty Detection. The first two algorithms in Experiments 1-4

clearly are not sufficient for this task, as they were not able to differentiate between

different people.

In conclusion, the Face Recognition task is relatively easy.

 59

Chapter 6:
Feature Identification—
Hair Style

The goal of this task is to identify whether a person has long or short hair. One of

the problems with this kind of classification is to objectively decide if a person has long

hair or short hair. If one has medium length hair, then it is a matter of personal opinion

whether one has short or long hair. Moreover, there are people where it is not clear from

the picture if they have long or short hair. For example Person 4 has his hair pulled back

in a long tail. However, it is not clear in every picture whether Person 4 has long hair or

not.

Person 4:

Another problem is regarding the selection of good training and testing sets. The

algorithms should learn if a person has long hair from only the picture of that person. We

want the algorithms to avoid correlating the face of a person with the length of the hair in

the training phase. In other words, the algorithms should learn the “hair length” feature,

not the person with long or short hair. Thus we have one set of experiments (Experiments

 60

11-15) that includes the same people with long hair in both the training and testing sets,

and a second set of experiments (Experiments 16-20) where we use different people with

long hair in the training and testing sets.

Experiments 11-15:

Person 3 Person 8 Person 14 Person 16 Person 19

First five images of

these people classified

as having long hair

and included in

training:

Person 30 Person 31 Person 34 Person 39

Person 3 Person 8 Person 14 Person 16 Person 19

Last five images of

these people classified

as having long hair

and included in

testing:

Person 30 Person 31 Person 34 Person 39

 61

Experiments 16-20:

All images of these

people classified as

having long hair and

included in training:

Person 3

(Images

81-90)

Person 14 Person 16 Person 39

All images of these

people classified as

having long hair and

included in testing:
Person 8 Person 19 Person 30 Person 31 Person 34

Within each set of five experiments, each experiment corresponds to one of the

five algorithms we use: Naïve Novelty Detection, Parzan Window Classifier, Fisher

Linear Discriminant Classifier, SVM Novelty Detection, and SVM Maximum Margin

Classifier. We use a Gaussian kernel with widths of 3000, 4000 and 6000 throughout and

a width of 9000 for particular experiments.

The format of each experiment is similar to the one in Chapters 5. For each

experiment we provide a goal, the dataset used, the training set, the testing set, the type of

kernel, the algorithm used, and the set of parameters for the algorithm. We present results

for each set of parameters in a table specifying the kernel width used, the classification

percentage, the number of testing points, the number of correct classifications, and a

 62

break down of false positives and false negatives. We conclude each experiment with a

discussion of the results.

We discuss major conclusions of the “long hair” feature identification task at the

end of the chapter.

 63

Experiment 11. Naïve Novelty Detection.

Purpose: Identify people with long hair from a set of pictures of various people.

Dataset: All 590 images.

Training Set: 45 images: first 5 images of Persons 3, 8, 14, 16, 19, 30, 31, 34, 39

(Negatives).

Testing Set: 545 images: other 5 images of people with long hair (Negatives) and

all 500 images of people with short hair (Positives).

Kernel: Gaussian kernel.

Algorithm: Naïve Novelty Detection.

Parameters: 01.0=7 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.0826 545 45 0 500

4000 0.0826 545 45 0 500

6000 0.0826 545 45 0 500

Notes: The algorithm considers all testing points non-novel, i.e. people with long

hair. It appears that it learns a decision boundary that is too large and thus all testing

points fall inside it.

 64

Experiment 12. Parzan Window Classifier.

Purpose: Identify people with long hair from a set of pictures of various people.

Dataset: All 590 images.

Training Set: 295 images: first 5 images from each series (59 series in all). First

5 images of Person 3, and all images of Persons 8, 14, 16, 19, 30, 31, 34, 39 classified as

+1 (Positives), rest of images classified as -1 (Negatives).

Testing Set: 295 images: last 5 images from each series (59 series in all).

Kernel: Gaussian kernel.

Algorithm: Parzan Window Classifier.

Parameters: none.

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.1525 295 45 250 0

4000 0.1525 295 45 250 0

6000 0.1525 295 45 250 0

Notes: The algorithm classifies all people as having long hair. Here we have a

similar phenomenon as in Experiment 11.

 65

Experiment 13. Fisher Linear Discriminant Classifier.

Purpose: Identify people with long hair from a set of pictures of various people.

Dataset: All 590 images.

Training Set: 295 images: first 5 images from each series (59 series in all). First

5 images of Person 3, and all images of Persons 8, 14, 16, 19, 30, 31, 34, 39 classified as

+1 (Positives), rest of images classified as -1 (Negatives).

Testing Set: 295 images: last 5 images from each series (59 series in all).

Kernel: Gaussian kernel.

Algorithm: Fisher Linear Discriminant Classifier.

Parameters: 1.0=9 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.979 295 289 5 1

4000 0.983 295 290 4 1

6000 0.979 295 289 5 1

Parameters: 01.0=9 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.983 295 290 4 1

4000 0.986 295 291 3 1

6000 0.979 295 289 5 1

 66

Notes: 01.0=9 provides slightly better results. For the Gaussian kernel width of

4000, the false positives are people who have a very different pose than their normal one,

and the one false negative that appears in all testing cases is Person 3 who moved her hair

behind her shoulders so less hair is visible. Otherwise the algorithm performs very well.

False

Positives: Image

150

Image

190

Image

430

False

Negatives:

Image

88

 67

Experiment 14. SVM Novelty Detection.

Purpose: Identify people with long hair from a set of pictures of various people.

Dataset: All 590 images.

Training Set: 45 images: first 5 images of Persons 3, 8, 14, 16, 19, 30, 31, 34, 39

(Negatives).

Testing Set: 545 images: other 5 images of people with long hair (Negatives) and

all 500 images of people with short hair (Positives).

Kernel: Gaussian kernel.

Algorithm: SVM Novelty Detection.

Parameters: 1.0,01.0 == 8: .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.956 545 521 24 0

4000 0.968 545 528 17 0

6000 0.979 545 534 11 0

9000 0.983 545 536 9 0

 68

Parameters: 1.0,1.0 == 8: .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.996 545 543 2 0

4000 0.996 545 543 2 0

6000 0.976 545 532 2 11

9000 0.882 545 481 0 64

Notes: With 1.0,01.0 == 8: , the algorithm performs very well with a Gaussian

kernel width of 9000. However, the best result is with 1.0,1.0 == 8: , with the kernel

width of 3000 or 4000; we have only two false positives and no false negatives. In image

229 we see that the person is positioned in such a way that a lot of his hair is not showing

in the picture, while in image number 88 the person moved her hair partly behind her

shoulders so most of it is not seen. These may be reasons as to why we get the two false

positives.

False

Positives:
Image 88 Image 229

False

Negatives:
(none)

 69

Experiment 15. SVM Maximum Margin Classifier.

Purpose: Identify people with long hair from a set of pictures of various people.

Dataset: All 590 images.

Training Set: 295 images: first 5 images from each series (59 series in all). First

5 images of Person 3 and all images of Persons 8, 14, 16, 19, 30, 31, 34, 39 classified as

+1 (Positives), rest of images classified as -1 (Negatives).

Testing Set: 295 images: last 5 images from each series (59 series in all).

Kernel: Gaussian kernel.

Algorithm: SVM Maximum Margin Classifier.

Notes: The algorithm did not finish solving the quadratic system of equations so

we have no results.

 70

Experiment 16. Naïve Novelty Detection.

Purpose: Identify people with long hair from a set of pictures of various people.

Dataset: All 590 images.

Training Set: 40 images: First 10 images of Person 3 and all images of Persons

14, 16, 39 (Negatives).

Testing Set: 550 images: all images of Persons 8, 19, 30, 31, 34 classified as

having long hair (Negatives) and all other 500 images (Positives).

Kernel: Gaussian kernel.

Algorithm: Naïve Novelty Detection.

Parameters: 01.0=7 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.09 550 50 0 500

4000 0.09 550 50 0 500

6000 0.09 550 50 0 500

Notes: The algorithm classifies every person as having long hair. The radius of

the hyper-sphere is too large and it includes every testing image.

 71

Experiment 17. Parzan Window Classifier.

Purpose: Identify people with long hair from a set of pictures of various people.

Dataset: All 590 images.

Training Set: 230 images: First 10 images of Person 3, and all images of Persons

2, 5, 14, 16, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44. Images of Persons 3, 14, 16, 39

classified as having long hair (Positives), rest of images classified as having short hair

(Negatives).

Testing Set: 360 images: all images of Persons 8, 19, 30, 31, 34 classified as

having long hair (Positives) and 310 images from other people classified as having short

hair (Negatives).

Kernel: Gaussian kernel.

Algorithm: Parzan Window Classifier.

Parameters: none.

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.138 360 50 310 0

4000 0.138 360 50 310 0

6000 0.138 360 50 310 0

Notes: The algorithm is not able to learn a good decision boundary. It may be

affected negatively by the large number of images with short hair in the training set.

 72

Experiment 18. Fisher Linear Discriminant Classifier.

Purpose: Identify people with long hair from a set of pictures of various people.

Dataset: All 590 images.

Training Set: 230 images: First 10 images of Person 3, and all images of Persons

2, 5, 14, 16, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44. Images of Persons 3, 14, 16, 39

classified as having long hair (Positives), rest of images classified as having short hair

(Negatives).

Testing Set: 360 images: all images of Persons 8, 19, 30, 31, 34 classified as

having long hair (Positives) and 310 images from other people classified as having short

hair (Negatives).

Kernel: Gaussian kernel.

Algorithm: Fisher Linear Discriminant Classifier.

Parameters: 1.0=9 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.944 360 340 20 0

4000 0.947 360 341 19 0

6000 0.950 360 342 18 0

 73

Parameters: 01.0=9 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.958 360 345 15 0

4000 0.950 360 342 18 0

6000 0.936 360 337 23 0

Notes: When 1.0=9 and for all kernel widths, Person 23 (Images 371-380) is

identified as having long hair, which makes sense since he does tend to have longer hair

than Person 2 for example. So the classification for this person could be considered

correct. The other pictures identified as having long hair are really false positives. These

pictures include people with a hood behind their back (Images 254, 256, 260), Person 4

and Person 28 making a funny face (Images 150, 430), people facing different directions

(Images 92, 417, 419) and people with more facial hair (Image 425). The algorithm

misclassifies these extreme cases.

Image 92 Image 150 Image 254 Image 256 Image 260

False

Positives

(1.0=9):

Image 417 Image 419 Image 425 Image 430 Images

371-380

 74

It is worth mentioning that we have no false negatives, so everybody with long

hair is correctly detected. Also there are very few instances (Image 92) where Person 3 is

detected as having long hair, just because her hair shows up from behind her back when

her head is turned away. This suggests that the algorithm is not identifying people, but

rather the "long hair" feature of people, since Person 3 was included in the training set

with clearly visible long hair, but in the testing set she has her hair pulled back which is

not clearly visible in most pictures. However, as soon as she turns her head and her pony

tail becomes visible, the algorithm detects that she has long hair in those pictures.

When 01.0=9 the algorithm is more consistent, especially with a kernel width of

3000. The funny faces of Person 4 (Images 130, 150), the person with longer hair in

image 311 (but only in this instance), as well as Person 11 with a hood behind his neck

(Images 251-260) are all detected as having long hair. Person 23 has longer hair than

most short hair people, so his images are false positives as well.

Image 130 Image 150 Image 252 Image 254 Image 256

False

Positives

(01.0=9):

Image 259 Image 260 Image 311 Images

371-380

(Person 23)

 75

It is clear that the algorithm detects long hair behind people's necks and above the

shoulders. If the hair is pulled back and not directly visible in the picture, or if it is not

reaching the shoulders of the person but it is medium in length, then the algorithm has

trouble identifying long hair versus short hair. Also, some people would disagree whether

medium length hair is short or long. The kind of classification that the algorithm makes

can be considered its own personal “opinion.” Thus, it is difficult to evaluate the actual

performance percentage since humans may not agree with a certain classification.

 76

Experiment 19. SVM Novelty Detection.

Purpose: Identify people with long hair from a set of pictures of various people.

Dataset: All 590 images.

Training Set: 40 images: First 10 images of Person 3 and all images of Persons

14, 16, 39 (Negatives).

Testing Set: 550 images: all images of Persons 8, 19, 30, 31, 34 classified as

having long hair (Negatives) and all other 500 images (Positives).

Kernel: Gaussian kernel.

Algorithm: SVM Novelty Detection.

Parameters: 1.0,01.0 == 8: .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.915 550 503 47 0

4000 0.916 550 504 46 0

6000 0.920 550 506 44 0

9000 0.924 550 508 42 0

 77

Parameters: 1.0,1.0 == 8: .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.936 550 515 35 0

4000 0.949 550 522 28 0

6000 0.955 550 525 22 3

9000 0.955 550 525 11 14

Notes: When 1.0,01.0 == 8: even if the classification percentage is high, the

algorithm misclassifies most of the people with long hair (there are 50 pictures of people

with long hair in the testing set and more than 40 pictures get misclassified). It is clearly

not learning the “long hair” feature.

When 1.0,1.0 == 8: the algorithm performs a little better and for a kernel width

of 9000 it is actually learning the "long hair" feature. We have several false negatives

meaning the algorithm considered these people to have long hair, although they cannot be

clearly classified as having long or short hair.

For the false negatives the people are debatable whether they have short or long

hair. Images 256 and 260 show a person with longer hair and much facial hair. Images

291, 298, 299, and 300 are a long hair person who has her hair pulled back but some of it

is hanging on the sides of her face so it is more visible. Images 322 and 327 are Person 18

who has medium length hair. It is interesting that not all Person 18’s pictures are detected

as having long hair. It is probably because his hair seems a little longer in these two

pictures and also because he is wearing a hood behind his neck which affects the

 78

algorithm’s classification. Images 91, 100, 101, 109, 111 are Person 3 where we see some

of her long hair but not all of it. Note that this algorithm detects the "long hair" feature in

a different way than the Fisher Linear Discriminant Classifier in Experiment 18 does

where Person 3 needed to be turned so that her pony tail would show up. Image 160 is

Person 4 with his shoulders raised a lot, which probably affected the algorithm and

classified the person has having long hair in this picture.

Image

91

Image

100

Image

101

Image

109

Image

111

Image

160

Image

256

False

Negatives:

Image

260

Image

291

Image

298

Image

299

Image

300

Image

322

Image

327

Note that even most of the false positives can be explained. Person 8 (Images

221-230) has medium length hair, and the algorithm classified him as having short hair. If

we do not consider Person 8’s misclassification, we actually get a classification

performance of 535 / 550 = 0.973 which is better than the Fisher Linear Discriminant

Classifier in Experiment 18. This performance is very good considering that this

algorithm is a just Novelty Detector and that the training set contains only 40 points

compared to the 550 testing points.

 79

Image 221 Image 222 Image 223 Image 224 Image 225 Image 226

False

Positives:

Image 227 Image 228 Image 229 Image 230 Image 338

In light of these comments the algorithm seems to perform very well. Since no

person can make a clear cut binary decision regarding the hair length of certain people,

we can just give credit to the algorithm for considering a medium length hair person

(such as Person 8) as having short hair. This decision could be interpreted as just the

algorithm's "personal opinion."

 80

Experiment 20. SVM Maximum Margin Classifier.

Purpose: Identify people with long hair from a set of pictures of various people.

Dataset: All 590 images.

Training Set: 230 images: First 10 images of Person 3, and all images of Persons

2, 5, 14, 16, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44. Images of Persons 3, 14, 16, 39

classified as having long hair (Positives), rest of images classified as having short hair

(Negatives).

Testing Set: 360 images: all images of Persons 8, 19, 30, 31, 34 classified as

having long hair (Positives) and 310 images from other people classified as having short

hair (Negatives).

Kernel: Gaussian kernel.

Algorithm: SVM Maximum Margin Classifier.

Parameters: 01.0=8 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.397 360 143 217 0

4000 0.519 360 187 173 0

6000 0.775 360 279 81 0

Note: When kernel width = 6000, the algorithm did not finish solving the

quadratic equations.

 81

Parameters: 1.0=8 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.402 360 145 215 0

4000 0.500 360 180 180 0

6000 0.911 360 328 32 0

Note: When kernel width = 6000, the algorithm did not finish solving the

quadratic equations.

Notes: When 01.0=8 and kernel width is 6000 the algorithm has 30 support

vectors and, although it seems that it has a higher classification error than Fisher Linear

Discriminant Classifier (Experiment 18) or the SVM Novelty Detection (Experiment 19),

most of the misclassified points are people with medium length hair or the length of their

hair is not clearly visible from the picture.

The algorithm detects the people with long hair perfectly, while it has some

"doubts" about 81 images. We do not provide all false positives for brevity, but we do

include images of the people who are misclassified. Following is a discussion of some of

the misclassified images.

Persons 7, 11, 15, 17 and 23 have medium length hair and are mostly classified as

having long hair. Person 18 has medium length hair and is mostly classified as having

short hair. Person 24 clearly has short hair, but is mostly classified as having long hair.

We hypothesize the misclassification occurs because of the dark jacket that appears in the

pictures. Persons 3 and 4 are inconsistently classified as having either long or short hair,

 82

probably because their long hair is not clearly visible in all pictures. Person 25 is

consistently classified as having short hair with the exception of his last image where his

hands probably affect the algorithm.

Person 3 Person 4 Person 7 Person 11 Person 15

False

Positives:

Person 17 Person 18 Person 23 Person 24 Person 25

Generally, it is difficult to assess what affects the algorithm, but it is clear that

when a person has more hair showing in the picture, the algorithm rates the person as

having long hair correctly. Note again that Person 3 was used in the training set with

clearly long hair showing in the pictures, and since there are more pictures of her from

the testing set classified as having short hair, it means the algorithm is really learning the

"long hair" feature and not the face of the person.

After analyzing many of the false positives we realize that the algorithm just

seems to have a different “opinion” about what long hair is compared to other algorithms.

However, it is still classifying certain people with short hair the wrong way (Person 24).

Although with some people such as Person 11 the algorithm is consistent, in other cases,

such as Person 4, it is clearly inconsistent.

When 1.0=8 , the algorithm is even more inconsistent, even if the classification

percentage is higher than when 01.0=8 . Person 24 is correctly classified as having short

 83

hair, but the other false positives are the same as when 01.0=8 with even more

inconsistencies throughout.

In conclusion, it is difficult to assess the performance of the algorithm in the two

cases of 1.0=8 and 01.0=8 .

 84

Conclusions to Hair Style Feature Identification Task:

The Naïve Novelty Detection and Parzan Window Classifier algorithms do not

work for this task. The other algorithms perform very well in all experiments.

For the algorithms that work, experiments 11-15 show that they are able to learn

if a person has long hair and almost consistently classify other pictures of the same

person correctly. In this set of experiments we have higher classification percentages than

in the second set of experiments probably because it is easier to identify a similar picture

of the same person and classify that person as having long or short hair.

The second set of experiments (16-20) proves that the algorithms learn the “long

hair” feature of the people in the images, not an association of the “long hair” label with a

particular person, as is the case in the first set of experiments. This is supported by the

observation that Person 3 is classified as having short hair in several instances of the

testing images, although pictures of her showing long hair are used as training images.

Moreover, the algorithms deal with people having medium length hair in a remarkable

way. Although there are varying degrees of inconsistencies among them, the algorithms

usually tend to choose one classification over the other for the majority of pictures of one

particular person.

This task seems relatively easy for the algorithms, although slightly more difficult

than Face Recognition. One of the difficulties of evaluating the task and the performance

of the algorithms rises from the possible disagreement between humans over the

classification of medium length hair.

 85

Chapter 7:
Feature Identification—
Smiling

The last task in our paper is learning to identify smiling people from a set of

pictures with people showing different moods.

Using the ratings of the photos we divide the database into two datasets in order

to see how the algorithms perform on the different cases. Recall the histogram of the

smile ratings in Figure 7.1.

Figure 7.1. Histogram of smile ratings.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Rating

N
um

be
r o

f P
ic

tu
re

s

 86

When the cutoff point is 6.0, the first dataset contains 113 people with smile ratings of

6.0 and higher and 477 people with smile ratings below 6.0. A cutoff point of 8.0

specifies the second dataset with 31 people with smile ratings of 8.0 and higher and 559

people with ratings below 8.0. During the experiments we consider people with ratings

equal to or above the cutoff point as smiling, while people with ratings below the cutoff

point as non-smiling. We divide the smiling people in half for training and use the other

half for testing for each dataset.

There are ten experiments in total, five for the first dataset and five for the second

dataset. Within a set of five experiments, each corresponds to one of the five algorithms

we use: Naïve Novelty Detection, Parzan Window Classifier, Fisher Linear Discriminant

Classifier, SVM Novelty Detection, and SVM Maximum Margin Classifier. We use a

Gaussian kernel with widths of 3000, 4000 and 6000.

The format of each experiment is similar to the one in Chapters 5 and 6. For each

experiment we provide a goal, the dataset used, the training set, the testing set, the type of

kernel, the algorithm used, and the set of parameters for the algorithm. We present results

for each set of parameters in a table specifying the kernel width used, the classification

percentage, the number of testing points, the number of correct classifications, and a

break down of false positives and false negatives. We conclude each experiment with a

discussion of the results.

We discuss major conclusions of the smile identification task at the end of the

chapter.

 87

Experiment 21. Naïve Novelty Detection—cutoff 6.0.

Purpose: Identify smiling people from a set of pictures of various people.

Dataset: All 590 images.

Training Set: First 56 smiling images (Negatives).

Testing Set: The other 57 smiling image (Negatives), and 477 non-smiling

images (Positives).

Kernel: Gaussian kernel.

Algorithm: Naïve Novelty Detection.

Parameters: 1.0=7 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.1067 534 57 0 477

4000 0.1067 534 57 0 477

6000 0.1067 534 57 0 477

Notes: The algorithm is classifying all pictures as smiling. We assume that the

very high dimensionality of the input space is affecting the algorithm in the training part,

so it forms a large radius that contains all training and testing points.

 88

Experiment 22. Naïve Novelty Detection—cutoff 8.0.

Purpose: Identify smiling people from a set of pictures of various people.

Dataset: All 590 images.

Training Set: First 15 smiling images (Negatives).

Testing Set: The other 16 smiling image (Negatives), and 559 non-smiling

images (Positives).

Kernel: Gaussian kernel.

Algorithm: Naïve Novelty Detection.

Parameters: 1.0=7 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.0278 575 16 0 559

4000 0.0278 575 16 0 559

6000 0.0278 575 16 0 559

Notes: (Similar conclusion to Experiment 21). The algorithm is classifying all

pictures as smiling. We assume that the very high dimensionality of the input space is

affecting the algorithm in the training part, so it forms a large radius that contains all

training and testing points.

 89

Experiment 23. Parzan Window Classifier—cutoff 6.0.

Purpose: Identify smiling people from a set of pictures of various people.

Dataset: All 590 images.

Training Set: First 56 smiling images (Positives) and first 238 non-smiling

images (Negatives).

Testing Set: The other 57 smiling image (Positives), and the other 239

non-smiling images (Negatives).

Kernel: Gaussian kernel.

Algorithm: Parzan Window Classifier.

Parameters: none.

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.1926 296 57 239 0

4000 0.1926 296 57 239 0

6000 0.1926 296 57 239 0

Notes: The algorithm is classifying all pictures as smiling. We have a similar

phenomenon as in Experiments 21 and 22.

 90

Experiment 24. Parzan Window Classifier—cutoff 8.0.

Purpose: Identify smiling people from a set of pictures of various people.

Dataset: All 590 images.

Training Set: First 15 smiling images (Positives) and first 279 non-smiling

images (Negatives).

Testing Set: The other 16 smiling image (Positives), and the other 280

non-smiling images (Negatives).

Algorithm: Parzan Window Classifier.

Parameters: none.

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.0541 296 16 280 0

4000 0.0541 296 16 280 0

6000 0.0541 296 16 280 0

Notes: The algorithm is classifying all pictures as smiling. We have a similar

phenomenon as in Experiments 21, 22 and 23.

 91

Experiment 25. Fisher Linear Discriminant Classifier—cutoff 6.0.

Purpose: Identify smiling people from a set of pictures of various people.

Dataset: All 590 images.

Training Set: First 56 smiling images (Positives) and first 238 non-smiling

images (Negatives).

Testing Set: The other 57 smiling image (Positives), and the other 239

non-smiling images (Negatives).

Kernel: Gaussian kernel.

Algorithm: Fisher Linear Discriminant Classifier.

Parameters: 01.0=9 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.5169 296 153 119 24

4000 0.5845 296 173 95 28

6000 0.6385 296 189 74 33

Notes: Although it is difficult to evaluate what causes such a poor performance,

the algorithm is able to detect roughly half of the smiles and more than half of the

non-smiles correctly.

 92

Experiment 26. Fisher Linear Discriminant Classifier—cutoff 8.0.

Purpose: Identify smiling people from a set of pictures of various people.

Dataset: All 590 images.

Training Set: First 15 smiling images (Positives) and first 279 non-smiling

images (Negatives).

Testing Set: The other 16 smiling image (Positives), and the other 280

non-smiling images (Negatives).

Kernel: Gaussian kernel.

Algorithm: Fisher Linear Discriminant Classifier.

Parameters: 01.0=9 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.5000 296 148 140 8

4000 0.5777 296 171 117 8

6000 0.6655 296 197 91 8

Notes: Although it is difficult to evaluate what causes such a poor performance,

the algorithm is able to detect half of the smiles and more than half of the non-smiles

correctly. Note that the classification percentage is similar to Experiment 25 even if the

cutoff is higher.

 93

Experiment 27. SVM Novelty Detection—cutoff 6.0.

Purpose: Identify smiling people from a set of pictures of various people.

Dataset: All 590 images.

Training Set: First 56 smiling images (Negatives).

Testing Set: The other 57 smiling image (Negatives), and 477 non-smiling

images (Positives).

Kernel: Gaussian kernel.

Algorithm: SVM Novelty Detection.

Parameters: 1.0,1.0 == 8: .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.1498 534 80 3 451

4000 0.1479 534 79 4 451

6000 0.1199 534 64 2 468

Parameters: 1.0,01.0 == 8: .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.6685 534 357 32 145

4000 0.4120 534 220 20 294

6000 0.2903 534 155 14 365

 94

Notes: This algorithm has the same problems as the Naïve Novelty Detection in

Experiment 21. The spread of smiling images among non-smiling images and the lack of

linearly separable data in the feature space are likely causes for the low performance.

Decreasing : to 0.01, thus making the decision boundary tighter seems to support this

theory since results improve. Although more than a half of the non-smiling pictures are

detected correctly, less than half of the smiling pictures are detected correctly.

 95

Experiment 28. SVM Novelty Detection—cutoff 8.0.

Purpose: Identify smiling people from a set of pictures of various people.

Dataset: All 590 images.

Training Set: First 15 smiling images (Negatives).

Testing Set: The other 16 smiling image (Negatives), and 559 non-smiling

images (Positives).

Kernel: Gaussian kernel.

Algorithm: SVM Novelty Detection.

Parameters: 1.0,01.0 == 8: .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.9600 575 552 16 7

4000 0.8330 575 479 12 84

6000 0.5478 575 315 8 252

Notes: The high classification percentage with a kernel width of 3000 is

misleading. The algorithm has trouble classifying all smiling images correctly. If we

increase the kernel width up to 6000, the algorithm is able to classify half of the smiling

images correctly, but it misclassifies almost half of the non-smiling images. Although the

algorithm performs better with a higher cutoff point than in Experiment 27, its limitations

are similar. This is an example of how difficult the smile classification task is.

 96

Experiment 29. SVM Maximum Margin Classifier—cutoff 6.0.

Purpose: Identify smiling people from a set of pictures of various people.

Dataset: All 590 images.

Training Set: First 56 smiling images (Positives) and first 238 non-smiling

images (Negatives).

Testing Set: The other 57 smiling image (Positives), and the other 239

non-smiling images (Negatives).

Kernel: Gaussian kernel.

Algorithm: SVM Maximum Margin Classifier.

Parameters: 01.0=8 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.4291 296 127 166 3

4000 0.5203 296 154 129 13

6000 0.6014 296 178 105 13

Parameters: 1.0=8 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.4291 296 127 166 3

4000 0.5203 296 154 129 13

6000 0.5304 296 157 127 12

 97

Notes: There is no significant difference between 01.0=8 and 1.0=8 .

Generally the algorithm cannot easily differentiate between smiling and non-smiling

images. However, with a kernel width of 6000 and 01.0=8 , the algorithm performs the

best. The misclassifications are well balanced. More than half of the non-smiling images

and 78% of the smiling images are classified correctly. This algorithm seems to classify

smiling images better than the SVM Novelty Detection in Experiment 27.

 98

Experiment 30. SVM Maximum Margin Classifier—cutoff 8.0.

Purpose: Identify smiling people from a set of pictures of various people.

Dataset: All 590 images.

Training Set: First 15 smiling images (Positives) and first 279 non-smiling

images (Negatives).

Testing Set: The other 16 smiling image (Positives), and the other 280

non-smiling images (Negatives).

Kernel: Gaussian kernel.

Algorithm: SVM Maximum Margin Classifier.

Parameters: 01.0=8 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.5777 296 171 117 8

4000 0.6622 296 196 92 8

6000 0.8176 296 242 45 9

Note: When kernel width = 6000, the algorithm did not finish solving the

quadratic equations.

Parameters: 1.0=8 .

Kernel

Width

Classification

Percentage

Testing

Points

Correct # False

Positives

False

Negatives

3000 0.5608 296 166 123 7

4000 0.6858 296 203 85 8

6000 0.7162 296 212 76 8

 99

Note: When kernel width = 4000 and 6000, the algorithm did not finish solving

the quadratic equations.

Notes: 01.0=8 is a better choice than 1.0=8 considering peak performance of

the algorithm. With 01.0=8 the algorithm is able to classify non-smiling images better

than the SVM Novelty Detection in Experiment 28, probably because it correlates the

training images with the classification. Moreover, there are only half misclassified

smiling images. Even if the algorithm did not completely solve the quadratic equations

with a kernel width of 6000, it still has a high correct classification percentage.

 100

Conclusions to Smile Feature Identification Task:

The Naïve Novelty Detection and Parzan Window Classifier algorithms do not

work for this task. The other algorithms perform better, but with clear limitations. Most

of the classification percentages of latter algorithms lie within the 50%-70% range.

Although they are able to classify correctly some of the images, generally more than half

of either smiling or non-smiling images are classified incorrectly. On closer inspection,

classification percentages above 90% are misleading. In these cases the algorithms tend

to classify most pictures as non-smiling and the small number of smiling pictures in the

testing set makes the classification percentage high, even if most of the smiling pictures

are misclassified.

These problems hint at the difficulty of the smile feature identification task.

 101

Chapter 8:
Conclusions

We are able to evaluate the performance of the five algorithms we used for our

tasks. Both Naïve Novelty Detection and Parzan Window Classifier are not sufficient to

learn any classification in any of the experiments. We hypothesize that the high number

of dimensions and the complicated nature of the Gaussian kernel defined feature space

were the causes of their failure.

The Fisher Linear Discriminant Classifier performs consistently well throughout.

The Face Recognition Task and the Hair Style Feature Identification Task are easy to

solve using this algorithm, but Smile Feature Identification proves to be slightly more

difficult. Fisher Linear Discriminant Classifier is obviously better than Naïve Novelty

Detection and Parzan Window Classifier. First, Fisher Linear Discriminant Classifier

correlates the training labels with the training points to improve classification percentages

over Naïve Novelty Detection. Second, even if Parzan Window Classifier does the same,

recall that Fisher Linear Discriminant Classifier takes into account the number of training

points as well as the density of each class of points to learn a better decision boundary.

SVM Novelty Detection is slightly better than Fisher Linear Discriminant

Classifier, and in several instances the advantages of using support vectors help this

 102

algorithm achieve even better results. For this algorithm, Face Recognition is an easy task

as well as classifying people as having long or short hair. Smile Feature Identification is

more difficult, but generally the algorithm performs slightly better at this task than Fisher

Linear Discriminant Classifier.

SVM Maximum Margin Classifier proves to be the most inconsistent algorithm

across all tasks. Although Face Recognition is mostly straightforward for other

algorithms, SVM Maximum Margin Classifier’s performance is average with only

80%-84% of the images being identified correctly. In the case of Hair Style Feature

Identification, the algorithm is not as good as SVM Novelty Detection, but reaches an

arguably good classification percentage. For Smile Feature Identification the algorithm is

the best, since it classifies both smiling and non-smiling people with a balanced accuracy.

Regarding the classification tasks, Face Recognition is straightforward and Hair

Style Feature Identification is slightly more difficult but still relatively easy. Smile

Feature Identification on the other hand proves to be very difficult for all five algorithms.

It is worth mentioning that the algorithms do not necessarily fail classifying

people as smiling or not, but that the high dimensionality of the input space together with

the use of the Gaussian kernel determines the misclassification. In other words, for a

difficult task such as this one, lower dimensionality feature spaces need to be hand

crafted for the algorithm to look at only key areas of the photographs. Thus, for future

research, we may try more advanced preprocessing of the images such as image

segmentation and more sophisticated normalization [3, 4].

 103

Acknowledgments

I would like to thank my research supervisor and academic advisor, Dr. M.

Kretchmar, for all the work he put in this project.

I would also like to thank David Nassar, Nathan Schmidt, Pam Arbisi, Tun Nyein,

Jon Efe, Todd Feil, Pancham Gajjar, Josh Mankoff, Emily Hampp, Michael Williams,

Mete Tuzcu, Matthew St. John, Thomas Bressoud, Adam Hitchcock, Tony Silveira, John

Szendiuch, Andrew Hoffman, Lewis Ludwig, Matthew Neal, Patrick Commins, Colleen

Hughes, Robey Holderith, Samuel Behrend, Michael Bono, Jonathan Pierce, Barry

Westmoreland, Max Quinlin, Chengeng Zeng, Kabir Mehra, Chinmoy Bhatiya, Scott

Ratermann, Rachel Spence, Michael Palzkill, Charlie Fear, Ian Hudson, Anne Young,

Nicole Scholtz, Robert Christian, Nathan Payne, Alexander Acheson, Jeffrey Camealy

and the ones that I missed for participating in the development of the database.

Last, but not least, I would like to thank the 57 people who rated all 590 images

for smiling content.

 104

 105

Bibliography

[1] Bartlett, Marian Stewart, Javier R. Movellan, and Terrence J. Sejnowski. Face
Recognition by Independent Component Analysis. IEEE Transactions on Neural
Networks. Vol 13. No 6. November 2002.

[2] Boser, B. E., I. M. Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. Proceedings of the Fifth Annual ACM Workshop on Computational Learning
Theory. Pittsburgh: ACM Press. 1992.

[3] Delac, Kresimir, and Mislav Grgic. http://www.face-rec.org/

[4] Delac, K., M. Grgic, and S. Grgic. A Comparitive Study of PCA, ICA, and LDA.
Proceedings of the 5th EURASIP Conference focuses on Speech and Image Processing,
Multimedia Communications and Services, EC-SIP-M 2005.

[5] Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Classification. 2nd Ed.
New York, NY: John Wiley & Sons, Inc. 2001.

[6] Hassoun, Mohamad H. Fundamentals of Artificial Neural Networks. Cambridge,
MA: The MIT Press. 1995.

[7] Haykin, Simon. Neural Networks: A Comprehensive Foundation. Upper Saddle
River, NJ: Prentice Hall. 1999.

[8] Kirby, Michael. Geometric Data Analysis. New York, NY: John Wiley & Sons, Inc.
2001.

[9] Kohonen, Teuvo. Self Organizing Maps. Heidelberg, Germany: Springer-Verlag.
1995.

[10] Lu, Juwei, Kostantinos N. Plataniotis, and Anastasios N. Venetsanopoulos. Face
Recognition Using LDA-Based Algorithms. IEEE Transactions on Neural Networks. Vol
14. No 1. January 2003.

 106

[11] Lu, Juwei, Kostantinos N. Plataniotis, and Anastasios N. Venetsanopoulos. Face
Recognition Using Kernel Direct Discriminant Analysis Algorithms. IEEE Transactions
on Neural Networks. Vol 14. No 1. January 2003.

[12] Martinez, Aleix M. and Avinash C. Kak. PCA versus LDA. IEEE Transactions on
Pattern Analysis and Machine Intelligence. Vol 23. No 2. 2001.

[13] Parzan, E. Extraction and detection problems and reproducing kernel Hilbert
spaces. Journal of the Society for Industrial and Applied Mathematics. Series A. on
control. 1962.

[14] Shawe-Taylor, John, and Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge, UK: Cambridge University Press. 2004.

[15] Schölkopf, Bernhard. Support Vector Learning. Munich: Oldenbourg Verlag. 1997.

[16] Schölkopf, Bernhard, and Alexander J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization and Beyond. Cambridge, MA: The MIT
Press. 2002.

[17] Schölkopf, Bernhard, Alexander J. Smola, and Klaus-Robert Müller. Nonlinear
Component Analysis as a Kernel Eigenvalue Problem. Max-Planck Institute for
Biological Research. Technical Report No 44. December, 1996.

[18] Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning: An
Introduction. Cambridge, MA: The MIT Press. 1998.

 107

Appendix A:
Images

This appendix contains all 590 images that compose our database.

Person1: Images 1-10

Person 1: Images 11-20

Person 1: Images 21-30

Person 1: Images 31-40

Person 2: Images 41-50

 108

Person 2: Images 51-60

Person 2: Images 61-70

Person 2: Images 71-80

Person 3: Images 81-90

Person 3: Images 91-100

Person 3: Images 101-110

Person 3: Images 111-120

Person 4: Images 121-130

 109

Person 4: Images 131-140

Person 4: Images 141-150

Person 4: Images 151-160

Person 5: Images 161-170

Person 5: Images 171-180

Person 5: Images 181-190

Person 5: Images 191-200

Person 6: Images 201-210

 110

Person 7: Images 211-220

Person 8: Images 221-230

Person 9: Images 231-240

Person 10: Images 241-250

Person 11: Images 251-260

Person 12: Images 261-270

Person 13: Images 271-280

Person 14: Images 281-290

 111

Person 15: Images 291-300

Person 16: Images 301-310

Person 17: Images 311-320

Person 18: Images 321-330

Person 19: Images 331-340

Person 20: Images 341-350

Person 21: Images 351-360

Person 22: Images 361-370

 112

Person 23: Images 371-380

Person 24: Images 381-390

Person 25: Images 391-400

Person 26: Images 401-410

Person 27: Images 411-420

Person 28: Images 421-430

Person 29: Images 431-440

Person 30: Images 441-450

 113

Person 31: Images 451-460

Person 32: Images 461-470

Person 33: Images 471-480

Person 34: Images 481-490

Person 35: Images 491-500

Person 36: Images 501-510

Person 37: Images 511-520

Person 38: Images 521-530

 114

Person 39: Images 531-540

Person 40: Images 541-550

Person 41: Images 551-560

Person 42: Images 561-570

Person 43: Images 571-580

Person 44: Images 581-590

