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Abstract

The Freeze Tag Problem arises naturally in the field of swarm robotics. Given n robots at
different locations, the problem is to devise a schedule to activate all robots in the minimum
amount of time. Activation of robots, other than the initial robot, only occurs if an active robot
physically moves to the location of an inactive robot. Several authors have devised heuristic
algorithms to build solutions to the Freeze Tag Problem. Here, we investigate an update pro-
cedure based on a hill-climbing, local search algorithm to solve the Freeze-Tag Problem.

Subject Classifications: Metaheuristics, degree-bounded minimum diameter spanning trees,
swarm robotics, neighborhood structure, improvement graph, combinatorial optimization

1 Introduction

Consider the following problem that arises in the field of swarm robotics ([6]). Suppose there are n
robots placed in a d-dimensional space. Starting with one initially active robot and the other n− 1
robots inactive, the goal is to “awaken” the inactive robots so that all n robots are awakened in
the fastest time possible. Robot x can awaken robot y only by physically moving to the location
of robot y. The cost for robot x to awaken robot y is determined by the straight-line, geometric
distance between x’s current position and y’s position; though not considered here, other variants of
this problem constrain robots to travel only on weighted edges of a prescribed graph. Once a robot
becomes active, it can assist in awakening the remaining dormant robots. The goal is to compute
an optimal awakening schedule, i.e. a schedule that minimizes the time to activate all robots, also
known as the makespan. Arkin, et. al. [6] dubbed the problem the Freeze-Tag Problem (FTP) for
its similarities to a children’s game of the same name.

The problem can also be described in the following context. A telecommunications company
would like to build a communications network for dissemination of information from a single source
r to all of nodes of minimum total cost. In wanting to achieve a desired level of service quality, the
company constrains itself to build a network with minimum longest path from r to allow for fast,
reliable communication links between the source and the customers. Also, the company wants to
limit the degree of each node in the network so as to more equally distribute the workload in routing
information. A spanning tree network design is a minimum cost alternative for the company because
it allows for the desired communcation without redundant network links. Hence the company desires
to build a spanning tree network with bounded vertex degrees and minimum longest path from the
source. Note that a solution to an instance of the FTP is a spanning tree respresenting the path
that robots take with minimum longest path from the initially-awaken robot. At each subsequent
awakening, two robots are able to disperse to activate other robots resulting in a degree bound of 3
on the spanning tree solution.
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1.1 Related Work

As seen in the second example, the problem of waking a set of sleeping robots in the manner described
by the FTP has similarities to various problems arising in broadcasting, routing, scheduling, and
network design ([6]). These broadcasting and network design problems share elements of trying
to determine how to efficiently disseminate information through a network. Similar problems have
arisen in the past to model this data dissemination, such as the minimum broadcast time problem
(see [10] for a survey), the multicast problem ([7, 8]), and the minimum gossip time problem ([17]).
However, as shown in [6],while the minimum broadcast time problem can be solved in polynomial
time in tree networks, the FTP remains intractible even on weighted star graphs.

In fact, much of the prior research on the FTP has focused on proving that it is NP-hard and
on designing heuristic algorithms to solve it. Arkin, et. al. ([5]) prove that the FTP is NP-
hard in unweighted graphs. These authors show that any “nonlazy” strategy yields an O(log n)
approximation but that an O(logn) approximation under the same strategy in general metric spaces
is difficult to obtain. Sztainberg, et. al. ([19]) prove that a natural greedy heuristic applied to a
geometric instance gives an O((logn)1−

1
d ) approximation in d-dimensions. Their experiments using

several heuristics described in Section 2, shows that this greedy approach performs well on a broad
range of data sets and yields a small constant-factor approximation.

The FTP is closely related to a more general problem called the Bounded Degree Minimum
Diameter Spanning Tree Problem (BDST). Introduced in [13], the BDST problem is stated as
follows. Given an undirected complete graph G = (V,E) with metric lengths cij for each (i, j) ∈ E
and bounds Bv > 0 on the degree of each v ∈ V , find a minimum-diameter spanning tree T so that
for each v ∈ V the tree-degree of each node v is not greater than Bv. A solution to a Freeze-Tag
instance with makespan ρ corresponds to finding a degree-3-bounded spanning tree with longest
root-to-leaf path ρ. We should note, however, that the FTP will always have an initial root node
with degree 1 which, in general, does not apply to the BDST.

Konemann, et. al. ([12]) provide an O(
√

logBn) ∗ ∆ approximation algorithm for the BDST,
where B is the max-degree in the spanning tree and ∆ is the minimum diameter of any feasible
T . This algorithm provides the best general bound for the FTP as well. This algorithm will also
be described in Section 2. Arkin, et. al. ([5]) propose an algorithm that performs better than the
algorithm of [12] in some special cases. Namely, for the case where the graph is unweighted, these
authors provide an O(1)-approximation.

1.2 Outline

The motivation of this paper is to propose a local hill-climbing strategy based on an update graph
and search algorithm. We refer to this as the Alternating Path Algorithm for the way it searches
a local neighborhood; we will show how this algorithm finds neighboring awakening schedules by
alternately adding and removing edges from the current schedule. We compare the performance
of the Alternating Path Algorithm on the Freeze-Tag problem against previously published results
based on heuristics and combinatorial search strategies.

The paper is outlined as follows. In Section 2, we describe the existing heuristic methods
(Greedy Fixed, Greedy Dynamic, BTFB, Opposite Cone, and Konemann’s BDST algorithm) to
build approximate solutions for the FTP and BDST. We also review two combinatorial search
strategies based on genetic algorithms and ant algorithms. We then propose, in Section 3, the
Alternating Path Algorithm that employs an improvement graph to take a given awakening schedule
and update this solution to a schedule with decreased makespan that still satisfies the degree bounds
on each vertex. Finally in Section 4 we present our experimental results.
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2 Preliminaries

2.1 Notation

In this section, we describe the basic notation used in the rest of the paper. Some of the graph
notation used, such as the definitions of graphs, trees, degrees, cycles, walks, etc., are omitted here,
and the reader is referred to the book of Ahuja, Magnanti, and Orlin ([3]). Let G = (V,E) be an
undirected network where associated with each edge e = (i, j) is a weight (perhaps metric distance)
cij . Suppose that T is a rooted spanning tree of G with node r specially designated as the root
node. Each arc (i, j) ∈ E(T ) denotes a parent-child relationship where i is the parent and j is the
child of i. Under this terminology, r is an ancestor to every node in T . Let Ti denote the subtree of
T rooted at i.

Associated with each v ∈ V (G), let δv(G) (also δv(T )) denote the degree of v in G (also T ) and
a number Bv to be a degree bound on v. That is, if T is a spanning tree solution for the FTP,
we require δv(T ) ≤ 3, v 6= r. Unique to the FTP, is the requirement that the root have degree
1, Br = 1, since the root is the initially active robot and it can only travel to one other robot to
awaken that. From that point forward, there will always be two robots (the already active one, and
the newly active one) which can leave a node hence the requirement δv(T ) ≤ 3 representing the
path of the incoming robot and the two paths of the outgoing robots.

Recall, a path P = {v0, e0, v1, e1, . . . , vk − 1, ek−1, vk} in G is a sequence of nodes and arcs with
ei = (vi, vi+1) ∈ E so that no node is repeated. Given a path P , let dist(P ) =

∑k−1
i=0 cvi,vi+1 .

2.2 Heuristic Solutions to the FTP

We now review some of the existing approaches for building a heuristic solution for the FTP and
BDST. Since minimum spanning trees can be built by a greedy approach ([3]), it makes sense to
apply this approach to the FTP. Simply stated, under a greedy awakening strategy, once a robot is
awakened, it locates the nearest asleep robot to it and attempts to wake it. Sztainberg et. al. [19]
explain though that any heuristic that attempts to build a solution from scratch in a greedy fashion
must specify how conflicts among robots are resolved, since more that one robot might desire to
wake the same neighboring robot. One way to avoid this conflict is to allow robots to claim their
next target, and once an inactive robot is claimed by an active robot, it cannot be claimed by
another. This greedy approach will be called Greedy Fixed (GF). Alternatively, one could allow
claims to be refreshed as needed. Using a greedy approach, a newly active robot could renegotiate
the claim of another robot if the newly awakened robot is closer to the claimed inactive robot. This
approach combined with an offline delayed target choice to avoid physical oscillations of robots will
be refered to as Greedy Dynamic (GD). Experimental results ([19]) show that the greedy dynamic
outperforms other methods over a variety of data sets.

Konemann et. al. [12] design an algorithm based on clustering the vertices of the graph. Their
idea is to partition the nodes into low-diameter components. They then form a balanced tree which
spans the clusters and has a small number of long edges. This ensures that the components are
connected by a low-diameter tree. Finally, for each component, a low-diameter spanning tree is found
with max-degree B. This divide and conquer approach improves upon the theoretical runtime of
the approaches in [19].

2.3 Genetic Algorithm Solution to the FTP

The genetic algorithm leverages the principles of Darwinian evolution to stochastically search a
complex solution space. These algorithms begin with an initial population of awakening schedules.
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Each schedule is evaluated by computing its makespan. Based on the makespan, solutions are prob-
abilistically removed from the population (there is a higher probability of retaining schedules with
better makespans). Some of the remaining awakening schedules are copied into the new population;
others are combined to form new awakening schedules. Finally, mutations alter some of the solutions
in the new population. As the cycle repeats with each subsequent generation, the overall fitness
of the population increases and very good solutions are increasingly more likely to be discovered.
We discuss those details of the genetic algorithm specific to the freeze tag problem. The interested
reader is directed to [1] for complete details on the genetic algorithm.

For the cross-over operator, we employ a variant of genetic algorithm cross-over operators used in
similar problems [11, 16]. Suppose two parent solutions, T1 and T2, are to be combined in cross-over
to create a child solution. The child’s root node is selected to be the root node in the parent with the
smaller makespan. The child also contains all edges common to both parents. This results in a graph
with k connected components, T1, T2, . . . , Tk. For each i, if |Ti| = 1, the component is connected
to other components by adding in the smaller of the two parent’s edges used to connect this node.
Lastly, if any robots were not connected to the awakening schedule in the prior step, typically due to
incompatibilities of the parents’ schedules that would result in cycles or disconnected schedules, the
algorithm searched top-down for the first edge to connect a node to the forest. This is equivalent
to trying to place robots in the awakening schedule earlier rather than later.

The child now replaces the parent with the larger makespan in the next generation of solutions
while the parent with the smaller makespan is retained. The mutation operator randomly swaps
edges between nodes in an awakening schedule.

For these series of experiments, the population size is either 200 or 2n where n is the number
of robots in the problem instance (two series of experiments are performed with each population
size). The number of generations is ?. Cross-over rate is 0.7 and mutation rate is set to 0.1. A
solution’s fitness is computed as f(T ) = ρ̄

ρ(T ) where ρ(T ) is the solution’s makespan and ρ̄ is the
average makespan of the current population. For selection, each solution received at least bf(T )c
(the integer of its fitness); the remaining slots in the fixed-size generation were filled probabilistically
using roulette selection on the fractional values of each solution’s fitness (i.e. f(T )− bf(T )c).

2.4 Ant Colony Optimization Solution to the FTP

Ant algorithms derive their concept from the ways ants search for food. As described in [9], real-life
ants use pheromone trails to guide themselves back and forth from food sources. Ants are attracted
to pheromone trials with high levels of pheromone. Those trails which find the shortest path to food
sources get traversed faster and therefore have their phermone levels reinforced more often.

For the Freeze-Tag problem, each of m ants are sent out to form an awakening schedule. Each
ant will leave a pheromone trial in two places: on the edges of the graph to reflect the chosen
awakening schedule and on the nodes of the graph to reflect whether both or only one robot left the
node to awaken other robots. Each ant will choose the next robot to be awakened at node j from
node i, at iteration t with some probability depending on the following:

1. Which nodes ant k has left to visit. Each ant k keeps track of a set Jk
i of nodes that still need

to be processed.

2. The inverse distance dij from node i to node j called the visibility and denoted ηij = 1
dij

.

3. The amount of virtual pheromone at iteration t representing the learned desirability of choosing
node j when transitioning from node i.
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4. The amount of virtual pheromone representing the learned desirability to choose to send r = 2
robots from node i to awaken other robots or to send only r = 1 robots.

3 A Neighborhood Search for the FTP

In this section, we introduce an improvement graph structure, similar to [4] and a search method
to indicate attractive edge exchanges for solutions of the FTP. Given a solution T to the FTP,
an improved solution T constitutes a degree-3 bounded tree whose maximum root-to-leaf path is
smaller than that of T . More concretely, given any feasible solution T = (V,E′) to the FTP problem,
with E′ ⊆ E and |E| = |V | − 1, let N (k)(T ) be the set of feasible trees T which differ from T in
exactly k edges. The sequence N (1)(T ), N (2)(T ), . . . , N (kmax)(T ), kmax ≤ |V | − 1, defines a so-
called neighborhood structure ([14]) relative to T for the FTP problem. We seek to explore this
neighborhood structure for a tree T whose makespan is less than T .

Many authors have introduced techniques to perform large-scale neighborhood searches in graphs,
see for instance [14] and [2], [4],[14] , [18] . These methods have been applied to similar problems
such as the degree-constrained MST problem [18] and the capacitated MST problem [4]. In the
latter, the authors define a corresponding graph, called an improvement graph, that is used to indi-
cate profitable exchanges of vertices and subtrees among multiple subtrees in a current solution to
produce an improved solution. Unlike [14] which randomly generates trees in N (i)(T ), using this im-
provement graph gives a deterministic approach to finding improved solutions in the neighborhood
structure.

3.1 The Search Method

Our goal is to define an improvement graph and a search technique that allows us to find a tree
T ∈ N (i)(T ), i = 1, . . . , kmax, such that the maximum root-to-leaf path in T is less than that of the
current solution T . To this end, let v ∈ T with degree less than Bv be called a candidate vertex.
Note for the Freeze Tag problem Bv = 3, ∀v ∈ V , and a vertex that has 0 or 1 children is a candidate.
Let P l

j be the path and dl[j] be the distance from vertex j in the tree T to the farthest leaf from j
in Tj . Let dr[i] be the distance along edges in T from the root vertex r to the vertex i. Let ρ(T )
denote the length of the longest path in T from r We wish to find a tree T ′ with ρ(T ′) ≤ ρ(T ).

We now define the specifics of this improvement graph. Let G1(T ) be a directed graph with
vertex set the same as T . Let (i, j) be a directed edge in G1(T ) if either of the following conditions
hold. If i is the parent of j in T , then (i, j) is a directed edge in G1(T ) called a tree edge. If (i, j) /∈ T ,
j 6= r, then (i, j) is a directed edge in G1(T ) if a distance condition is satisfied; we call this type
of edge a nontree edge. This distance condition will be discussed later. The case of j = r is more
complicated and will not be considered here.

We wish to show that an exchange of edges/subtrees in T corresponds to traversing an alternating
path AP = {v0, e0, v1, e1, . . . , vk, ek, vk+1} between tree edges (ET = {e0, e2, . . . , ek−1}) and nontree
edges (EN = {e1, e3, . . . , ek}) in G1(T ) beginning at a vertex v0 in Pl(T ) and ending at a candidate
vertex. If such an alternating path exists, in forming T from T we delete those traversed tree edges
in G1(T ) from T and add edges (j, i) to T when edges (i, j) ∈ EN are traversed. Define E

N
to be

such that (j, i) ∈ E
N

whenever (i, j) ∈ EN . We claim that T = T − ET + E
N

is a spanning tree,
rooted at r, such that for all v ∈ T , δv ≤ Bv. To illustrate this, consider the following operations
for exchanging edges.
Example 1: Child/Subtree Promote Let Tj be a subtree of T where δj(T ) < Bj , and let i
(with parent k 6= j be a grandchild of j connected to j by tree path PT (j, i) of distance dist(j, i)
such that dl[i] + cij + dr[j] < ρ(T ). Note, if the Triangle Inequality is satified by the edge weights,
cij < dist(j, i). The child-promote method would delete (k, i) and make j the parent of i. In the
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improvement graph, since dl[i]+ cij +dr[j] < ρ(T ), the link (i, j) would be a nontree edge in G1(T ).
Hence the alternating path AP = {k, (k, i), i, (i, j), j} exists in G1(T ).
Example 2: Child/Subtree Exchange In this operation, two vertices b and c (nonancestors)
swap one of their children. This operation is shown in Figure 2 along with alternating cycle (b− e−
c− f − b) in the improvement graph. This operation can be extended easily to multiple edge swaps.

a

b c

ed f g

a

b G (T)
1

a

b c

ed f g

e f

c

Figure 1: Illustration of Child Exchange and Corresponding Improvement Subgraph

We now wish to show by exchanging edges in this fashion that T = T − ET + E
N

is a rooted
spanning tree that satisfies all degree constraints.

Lemma 1 T is a spanning tree rooted at r.

Proof. Since (j, r) /∈ AP by construction, the root node cannot change. Thus, we need only to
show that T is a graph with n − 1 edges and no cycles. By the construction of AP , |ET | = |EN |,
and hence |E(T )| = |E(T )| − |ET |+ |EN | = |E(T )| = n− 1.

To show T is cycle-free, suppose to the contrary that T contains a cycle C. Then C consists of
edges in T − ET ⊂ T and edges in E

N
. If C ∩ E

N
= ∅ then we have a contradiction since T is a

spanning tree. Otherwise, there exists an edge a0 = (i, j) ∈ C ∩E
N

. By the construction AP , there
exists edge e0 = (m, j) that directly preceeds a0 in AP and e0 ∈ ET . Since AP contains vertex j
at most once (because it is a path), the edge ej = (l, j) that preceeds a0 in C must be in T − ET .
Since e0, ej ∈ E(T ), j is a child of l and m indicating a cycle in T , a contradiction. Hence T is
cycle-free, and thus T is a spanning tree. 2

Lemma 2 T satisfies δv ≤ Bv for all v ∈ V (T ).

Proof. Note that if v /∈ AP , then δv(T ) = δv(T ) ≤ Bv. Also, if vi is an interior vertex of AP ,
it gains a child (vi−1) and loses a child (vi) and thus δv(T ) = δv(T ) ≤ Bv. Hence, we need only
to consider the end vertices of the path AP : v0 and vk+1. The vertex v0 loses a child (v1) so
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δv0(T ) < δv0(T ) ≤ Bv0 . Further, by construction of AP , in T , δvk+1(T ) < Bvk+1 . Thus, since vk+1

gains only one child, vk, δvk+1(T ) = δvk+1(T ) + 1 ≤ Bvk+1 , and the result is shown. 2

Given that the improvement graph can be used to generate alternating paths ending at a can-
didate vertex, one option for generating an improved solution is to successively find such paths and
test whether such a path produces an edge exchange that would result in ρ(T ) ≤ ρ(T ). Under this
method, the only criteria for a nontree edge e to be included in G1(T ) would be e ∈ E(G). Another
option would be to establish a distance criteria for nontree edge inclusion in G1(T ) so that the im-
provement graph might be used to indicate attractive edge exchanges. One obvious criteria would
be that if (i, j) /∈ T , j 6= r, then (i, j) is a directed nontree edge in G1(T ) if dl[j]+ cij +dr[i] < ρ(T ).

This criteria, though, is not reliable under all search methods of G1(T ). Consider a nontree edge
(u, v) ∈ G1(T ). If a search method for G1(T ) traverses (u, v) then Tu will be attached to v in T ′.
However, this attachment could change the distance labels dl[j] for v and its ancestors and dr[i] for
u and its descendants making their distance labels unreliable. To combat this, we attempt to search
edges (i, j) ∈ G1(T ) where dl[j] + cij + dr[i] < ρ(T ) is guaranteed to hold. To accomplish this, we
restrict movement in G1(T ) to be between disjoint subtrees. This restriction is enforced in [4] under
a natural condition of a capacited minimum spanning tree. Here, more care is needed. Let P be an
alternating path (or cycle) in G1(T ), we say P = {v0, e0, v1, e1, . . . , vk, ek, vk+1} between tree edges
ET = {e0, e2, . . . , ek−1} and nontree edges EN = {e1, e3, . . . , ek} in G1(T ). Then P is a reliable path
if for each ei = (vi, vi+1) ∈ EN , every vk, k ≥ i + 1, is neither an ancestor of vi+1 nor a descendant
of vi. Given a reliable path (cycle) in G1(T ), we can show T is a degree-bounded rooted spanning
tree with no greater maximum root-to-leaf path than T .

The improvement graph takes O(n2) time to construct since each vertex pair must be checked
to determine whether the conditions for edge inclusion have been satisfied. The complexity of
finding such an alternating path or cycle of length less than 2 · kmax (indicating T has kmax edges
different from T ) is O(kmax · n) per node used as v0. Searching for tree/nontree edges from each
node involves just a scan of the edges emanating from the node taking O(n) time per node. To
check whether a vertex is an ancestor or descendant of a previously visited vertex, a 0− 1 ancestor
and descendent array is employed. This makes this check excutable in O(1) time. To produce an
alternating path of length 2kmax then is accomplished in breadth-first fashion in O(kmax · n) time.
We limit ourselves to choosing v0 to lie on the path defining ρ(T ). So our search takes O(kmax ·n2)
time. In implementation, we limit kmax ≤ 4.

4 Experimental Results

In this section we illustrate the operation of the Alternating Path Algorithm by showing the edges
that are added and removed along the alternating path. We then discuss implementation details of
the algorithm such as search depth (previously referred to as kmax) and iterative improvement. We
compare the results of the Alternating Path Algorithm against the other benchmarks noted in the
previous work discussion. Finally, we note a quirk of the neighborhood structure searched by this
particular hill climbing algorithm.

4.1 Illustrating the Alternating Path Algorithm

For this discussion, we use the Eil51 problem from the TSPLIB [20] which contains 51 robots
dispersed in 2D space with {x, y} coordinates in the range of (0, 0) to (70, 70). The location of these
robots is shown in Figure 2. The numbered labels of these robots is arbitrary (set by the Eil51.tsp
file) but are useful for referring to specific robots.

Since the Alternating Path Algorithm improves upon an existing solution to the FTP, we need
an awakening schedule to use as a ”seed” value. We use Greedy Dynamic (see Heuristic solutions
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Figure 2: Greedy Dynamic’s Solution for Eil51.tsp

discussed earlier) as an algorithm that provides a starting point with a good, but not nearly optimal
awakening schedule. The structure of Greedy Dynamic’s solution is shown in Figure 2. This awak-
ening schedule has a makespan of ρ(T ) = 66.07 seconds with the root node in the middle (rootID
= 51). The longest path, indicated by the shaded edges, traverses robots 51, 46, 12, 47, 4, 17, 44,
42, and 40.

Mechanically, the Alternating Path Algorithm starts near the root at robot 46 (the root is not
considered for edge swapping in this algorithm). It then tries to severe (remove) the edge between
robot 46 and robot 12 along the longest path. After removing this edge, it will now have to add
an edge from robot 12 to some other already-connected robot. Thus it continues constructing the
alternating path by removing and adding edges until it adds a final edge at a candidate robot (one
with 0 or 1 children). The algorithm exhaustively considers all such alternating paths; the search
space is reduced considerably by eliminating obvious choices that would induce cycles and other
undesirable features.

After searching for alternating paths starting between robots 46 and 12, it then progresses to the
next edge along the longest path. It will next consider alternating paths formed between robots 12
and 47. Then robots 47 and 4. And so on until the last edge between robots 42 and 4 is considered.
Of all these new trees generated, the best is recorded and is used as the solution returned by the
Alternating Path Algorithm.

For the specific case in Figure 2, the best alternating path structure was found using the
connection between robots 44 and 42. In Figure 3 we see the newly created awakening sched-
ule. The edges which have been added are shown with heavy dashed lines. The edges which
were removed are shown in light dotted lines. The alternating path discovered here consists of
{ (44, 42), (42, 4), (4, 37), (37, 5), (5, 38), (38, 11)} where the odd edges are the ones removed and
the even edges are the ones added. Note, by the proof in the prior section, we do indeed end up
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Figure 3: Illustration of Alternating Path Algorithm

with a structurally sound spanning tree.
The makespan of this new tree is ρ(T ′) = 56.80 seconds (compared with 66.07 seconds of the

seed tree). Note that the longest path has changed, it now starts at the root and progresses toward
the upper left corner: (51, 46, 12, 47, 18, 14, 24, 43).

4.2 Depth Control and Iteration

As discussed previously, N (k)(T ) is the neighborhood of all trees differing from T by k edges. This
actually infers a pair of edges (one removed and one added). Thus the example awakening schedule
illustrated in Figure 3 belongs to N (3)(T ). By controlling the k parameter, we can limit the number
of edge exchanges in our search process. Naturally, a larger k generally finds better solutions but at
the cost of more computation and a quirky side-effect that we discuss in the next subsection.

Looking back at Figure 3, we again mention that the longest path has changed from the lower
right corner to the upper left corner. An obvious question is why not apply the algorithm again
to the new longest path to see if further gains can be realized? The Iterative Alternating Path
Algorithm attempts just this process. It repeated applies the update search to successive solutions
of improvement graphs until no further improvement can be realized. Thus Figure 3 is just the first
iteration of this process.

We actually find that an additional 14 iterations are possible with incremental improvements
at each step. The final awakening schedule, after 15 iterations of Alternating Path, is shown in
Figure 4. It features a makespan of 51.57 and has fewer than half the original edges of the seed tree.
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Figure 4: Iterative Alternating Path Algorithm

4.3 Results

The following table summarizes the best solutions found using each method on seven different FTPs.
These seven problems were selected from the TSPLIB (Traveling Salesperson Problem Library) [20].
While the ant algorithms typically perform well, it should be noted that the ant algorithm actually
employed a primitive version of Alternating Path to further improve upon the solutions that it had
discovered; thus the results for ant algorithm are a bit better than would normally be accomplished
with the algorithm alone. The Genetic Algorithm search also performs well. We can see in general
that Iterative Alternating Path finds solutions which are significantly better than Greedy Dyanmic,
but still falls short of the gains realized by these two combinatorial search algorithms (ants and GAs).

DataSet → eil51 eil76 kroA100 d198 lin318 att532 rat783
Algorithm ↓
Greedy Fixed 75.03 68.7 3857 3087 4612 9720 463.3
Greedy Dynamic 61.63 56.64 2515 2433 2806 5096 340.8
Center of Mass 55.92 59.65 2591 2446 2944 5367 362.6
Genetic Algorithm 54.79 51.72 2393 2445 2759 5064 475.7
Ant Algorithm 49.20 50.28 2396 2380 2700 5073 336.0
Alternating Path 50.56 52.77 2442* 2773* 2717 5115* 403.3*

Our first comment on Alternating Path concerns its search methodology. AP is clearly a local
hill-climbing method; it finds solutions within a neighborhood of its current best solution and then
chooses the most optimal among these. Furthermore, it is limited to only improving steps and
thus will never escape a local minima in its neighborhood of search. The more robust searching
algorithms (ants and GAs) are more adapt at escaping local minima and exploring a larger portion
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of the solution space.
The IAP algorithm is also computationally intensive. Running on a fast workstation, a 200 robot

problem with depth=4 requires more than 24 hours of computation time. Increasing the problem
size even modestly (say lin318.tsp with 318 robots) prohibits full computation; we are limited to
computing only a subset of initial seeds. These computations are marked with an asterisk in the
table.

This suggests a more proper role for Alternating Path. Instead of using AP as a basic search
algorithm, it is better to use a more exploratory algorithm first. Then AP can be used as a final step
operating on the best (or best few) solution found with the first search algorithm. Thus IAP acts
more like a last-step improvement procedure to further realize gains on an already good solution.
It is hypothesized that IAP would also work well in concert the Simulated Annealing. The SA
algorithm is adept at escaping the local minima that limit IAP.

4.4 Local Search Topology

Our last experimental remarks concern the way in which IAP searches. The Alternating Path
Algorithm is essentially a local hill-climbing method. The N (k)(T ) function specifies a set of local
solutions in the neighborhood of tree T . The Alternating Path Algorithm searches a subset of this
neighborhood and selects the best new solution as the next tree, T ′. Iterative AP will continue to
make incremental improvements to the tree until no further improvements can be found. Thus the
final solution is a local minima (with respect to makespan) in its neighborhood.

We can conjecture about the topology of the makespan function over the space of trees searched.
It could, for example, be a well-shaped basin with a distinct local minima that will inevitably be
discovered regardless of the route taken. Alternatively, the landscape could be full of many hills and
valleys with multiple local minima; in this latter case, the final solution will depend highly on the
path of the search algorithm in exploring the space of solution trees.

The parameter, kmax, determines the number of edge exchanges we may consider to construct the
neighborhood of a solution T . Naturally, increasing the parameter kmax expands the neighborhood
thereby allowing us to consider a greater number of potential next solutions and possibly discovering
a better local makespan that would not have been found in a single step with a lower kmax.

If the topology is a smooth basin, then larger kmax is generally better. We’ll take faster steps
toward the inevitable discovery of the locally optimal awakening schedule. But if the topology is
more varied, then larger steps may take us out of of local basin where a very good solution might
lie; or alternately, allow us to skip into a better basin with a better local minima.

An intriguing result allows us to hypothesize that the topology is probably more varied than
smooth. On the Eil51 problem, we ran Iterative Alternating Path with a depth of kmax = 3 and
achieved a best solution of 51.57 after 15 iterations. Increasing kmax = 4 drops the number of
iterations down to just seven. However, the locally optimal solution found has a makespan of only
53.69. The larger neighborhood structure of this latter run allowed us to accept an intermediate
solution that was not available with the smaller neighborhood, but by doing so, it stepped out of a
basin that contained ultimately a better solution (51.57).
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