
cs281: Introduction to Computer Systems

Project Lab 3: The Bomblab – Diffusing a Binary Bomb

Distributed: Sept. 29, Due: Oct. 10

1 Introduction

The nefariousDr. Evil has planted a slew of “binary bombs” on our class machines. A binary bomb is a
program that consists of a sequence of phases. Each phase expects you to type a particular string onstdin .
If you type the correct string, then the phase isdefused and the bomb proceeds to the next phase. Otherwise,
the bombexplodes by printing"BOOM!!!" and then terminating. The bomb is defused when every phase has
been defused.

There are too many bombs for us to deal with, so we are giving each student a bomb to defuse. Your mission,
which you have no choice but to accept, is to defuse your bomb before the due date. Good luck, and welcome
to the CS bomb squad!

Step 1: Get Your Bomb

You can obtain your bomb by pointing your Web browser at:

http://tashi.mathsci.denison.edu:15213/

from a computer on the Denison network.

This will display a binary bomb request form for you to fill in.Enter your Linux lab user name and your email
address and hit the Submit button. The server will build yourbomb and return it to your browser in atar file
calledbombk.tar , wherek is the unique number of your bomb.

Save thebombk.tar file to a (protected) directory in which you plan to do your work. Then give the
command:tar -xvf bombk.tar . This will create a directory called./bombk with the following files:

• README: Identifies the bomb and its owners.

• bomb: The executable binary bomb.

• bomb.c : Source file with the bomb’s main routine and a friendly greeting from Dr. Evil.

• writeup. {pdf,ps }: The lab writeup.

If for some reason you request multiple bombs, this is not a problem. Choose one bomb to work on and delete
the rest.

1



Step 2: Defuse Your Bomb

Your job for this lab is to defuse your bomb.

You must do the assignment on one of the class machines in Olin219. In fact, there is a rumor that Dr. Evil
really is evil, and the bomb will always blow up if run elsewhere. There are several other tamper-proofing
devices built into the bomb as well, or so we hear.

You can use many tools to help you defuse your bomb. Please look at thehints section for some tips and ideas.
The best way is to use your favorite debugger to step through the disassembled binary.

Each time your bomb explodes it notifies the bomblab server, and you lose 1 point (up to a max of 20 points)
in the final score for the lab. So there are consequences to exploding the bomb. You must be careful!

The first four phases are worth 10 points each. Phases 5 and 6 are a little more difficult, so they are worth 15
points each. So the maximum score you can get is 70 points.

Although phases get progressively harder to defuse, the expertise you gain as you move from phase to phase
should offset this difficulty. However, the last phase will challenge even the best students, so please don’t wait
until the last minute to start.

The bomb ignores blank input lines. If you run your bomb with acommand line argument, for example,

linux> ./bomb psol.txt

then it will read the input lines frompsol.txt until it reaches EOF (end of file), and then switch over to
stdin . In a moment of weakness, Dr. Evil added this feature so you don’t have to keep retyping the solutions
to phases you have already defused.

To avoid accidentally detonating the bomb, you will need to learn how to single-step through the assembly
code and how to set breakpoints. You will also need to learn how to inspect both the registers and the memory
states. One of the nice side-effects of doing the lab is that you will get very good at using a debugger. This is
a crucial skill that will pay big dividends the rest of your career.

Logistics

This is an individual project. All handins are electronic. Clarifications and corrections will disseminated
through class or through the Piazza site for cs281.

Handin

There is no explicit handin. The bomb will notify your instructor automatically about your progress as you
work on it. You can keep track of how you are doing by looking atthe class scoreboard at:

http://tashi:15213/scoreboard

This web page is updated continuously to show the progress for each bomb.

2



Hints (Please read this!)

There are many ways of defusing your bomb. You can examine it in great detail without ever running the
program, and figure out exactly what it does. This is a useful technique, but it not always easy to do. You can
also run it under a debugger, watch what it does step by step, and use this information to defuse it. This is
probably the fastest way of defusing it.

We do make one request,please do not use brute force! You could write a program that will try every possible
key to find the right one. But this is no good for several reasons:

• You lose 0.5 points (up to a max of 20 points) every time you guess incorrectly and the bomb explodes.

• Every time you guess wrong, a message is sent to the bomblab server. You could very quickly saturate
the network with these messages, and cause the system administrators to revoke your computer access.

• We haven’t told you how long the strings are, nor have we told you what characters are in them. Even
if you made the (incorrect) assumptions that they all are less than 80 characters long and only contain
letters, then you will have2680 guesses for each phase. This will take a very long time to run,and you
will not get the answer before the assignment is due.

There are many tools which are designed to help you figure out both how programs work, and what is wrong
when they don’t work. Here is a list of some of the tools you mayfind useful in analyzing your bomb, and
hints on how to use them.

• gdb

The GNU debugger, this is a command line debugger tool available on virtually every platform. You
can trace through a program line by line, examine memory and registers, look at both the source code
and assembly code (we are not giving you the source code for most of your bomb), set breakpoints, set
memory watch points, and write scripts.

The course web site, in the ’Supplements’ section:

http://www.denison.edu/˜bressoud/cs281-f12/Suppleme nts/

has a very handy single-pagegdb summary that you can print out and use as a reference. Here aresome
other tips for usinggdb .

– To keep the bomb from blowing up every time you type in a wrong input, you’ll want to learn how
to set breakpoints.

– For online documentation, type “help ” at the gdb command prompt, or type “man gdb”, or
“ info gdb ” at a Unix prompt. Some people also like to rungdb undergdb-mode in emacs.

• objdump -t

This will print out the bomb’s symbol table. The symbol tableincludes the names of all functions and
global variables in the bomb, the names of all the functions the bomb calls, and their addresses. You
may learn something by looking at the function names!

3



• objdump -d

Use this to disassemble all of the code in the bomb. You can also just look at individual functions.
Reading the assembler code can tell you how the bomb works.

Although objdump -d gives you a lot of information, it doesn’t tell you the whole story. Calls to
system-level functions are displayed in a cryptic form. Forexample, a call tosscanf might appear as:

8048c36: e8 99 fc ff ff call 80488d4 <_init+0x1a0>

To determine that the call was tosscanf , you would need to disassemble withingdb .

• strings

This utility will display the printable strings in your bomb.

Looking for a particular tool? How about documentation? Don’t forget, the commandsapropos , man, and
info are your friends. In particular,man ascii might come in useful.info as will give you more than
you ever wanted to know about the GNU Assembler. Also, the webmay also be a treasure trove of information.
If you get stumped, feel free to ask your instructor for help.

4


