¢s281: Computer Organization

Lab2 Prelab

The purpose of this prelab is to introduce some of the fundamentals of Combinational Logic
Design, preparing us for using the breadboards to build circuits designed in this Prelab. The
prelab will take us through a number of examples of the design process and the relationship
between digital logic and Boolean expressions and then the lab itself will focus on implementing
and verifying a digital logic circuit.

1 Combinational Logic Design

Combinational Logic Design refers to the use of logic gates that, when combined, perform some
boolean function. The boolean function results in output(s) that are dependent only on the
input values and are independent of previous input values or states. In other words, the current
inputs completely determine the output(s).

1.1 Fundamentals

Expressions in boolean algebra consist of constants, boolean variables, and operators, and
additional precedence/order of operation can be enforced by using parenthesis. For the purposes
of digital logic, we use 0 and 1 to represent boolean false and true, respectively. We primarily
use single letter variables, sometimes subscripted when we need a set of variables, and each
variable represents a value of either 0 or 1. For the boolean logical operators of and and or, we
borrow the arithmetic notions of product and addition, and use symbols of - and +, respectively.
We also borrow from arithmetic algebra and say that two variables placed next to each other
implicitly have an and operation between them. For logical negation, we use a line over the
boolean expression to be negated. So the expression:

X+YZ

represents X or’d with the negation of the composite expression (Y and Z). In boolean algebra,
negation has precedence over and, which has precedence over or, soin XY +7, the Y is evaluated
first, followed by the and with X, followed by the or with Z.

In both the expressions of boolean algebra and in their realization in digital logic, the variables
represent the input to the expression or the circuit. A digital logic realization of a boolean
algebra expression is then remarkably straightforward. Given digital logic elements (called
gates) that implement and, or and not with voltages representing logical 0 and 1 (typically
Ground and +5 volts, respectively), then there is a direct mapping of the boolean algebra to
the circuit, using the precedence of the boolean algebra to feed the order of the gates in the
circuit. We often depict a circuit with the inputs on the left or the top, and work to the right
and/or down toward the result of the expression (the boolean output). So the expression above,
represented as a circuit is depicted below.



where the lines represent wires and the symbols are as follows:

Represents an input pin, where the notation
inside the box gives the number of input bits (1

bit input in this example)

Represents an output pin, where the notation

inside the circle gives the number of bits (1 bit

of output in this example)

Represents an and gate, with the two inputs on
the left and the output on the right

:D_ Represents an or gate, with the two inputs on
_l:;a.g_

the left and the output on the right

Represents a not gate, with the input on the
left and the output on the right

At an abstract level, we can describe the combinational digital logic design/realization process
as composed of two steps:

1. Derive a set of boolean expression whose variables are the inputs to the circuit and each
expression defines a single boolean output. This set of boolean expressions express the
desired functionality of the combinational circuit. Many different boolean expressions
can represent equivalent functionality, and we typically want as simple a set of boolean
expressions as possible.

2. Given the set of boolean expressions, realize the circuit in gates and wires, allowing inputs
and outputs to be manipulated and checked.

This prelab leads you through the learning of some initial tools and mechanisms to achieve Step
1, while the Lab will allow you to practice with Step 2. It is through the design of combinational
circuits that, given a binary representation of data items in a computer and a program running
on a computer, we can achieve computation.

1.2 Truth Table

A truth table is a mechanism for complete specification of one or more boolean outputs for
a set of boolean inputs. Along with the outputs, we may sometimes include columns for
subexpressions, and these have no effect on the number of rows in the truth table. The number



of rows in a truth table is dependent only on the number of boolean input variables. If n is
the number of boolean input variables, the truth table should have 2" rows. You should have
already seen truth tables for specifying the values of boolean expressions given a set of boolean
input variables in your introductory computer science class, so this should be review. Consider
the following truth table with two boolean input variables A and B, with output Y

row| A BI|Y
0 0 0| 1
1 0 110
2 1 0140
3 1 110

Note that we will generally not annotate with row numbers, included here for ease of reference.
Also note that when we consider the order of the rows and the corresponding possible values
of the input variables A and B, the order follows a binary counting order when the values of
A and B are interpreted as a binary value. This row order is a standard order, and you should
follow the same.

Q1 : Write down an English sentence characterizing the output, Y, as a boolean logical com-
bination of the inputs.

Q2 : Is Y equivalent to any of the basic boolean operators that you know?
Q3 : Fill in a boolean algebra expression defining Y':

Y =

Q4 : Draw a gate realization for Y based on your answer to the previous question.

Now answer Q1, Q3, and Q4 (and label as Q5, Q6, Q7) for the following truth table:

row| A BI|lY
0 0 0| 1
1 0 110
2 1 0 1
3 1 110

Q8 : How many different truth tables are possible for the case with exactly two input variables?
Justify your answer.

1.3 English to Truth Table

Sometimes a designer is given a natural language description of some desired combinational
output given a set of boolean inputs. One could attempt to translate directly to boolean



expressions, but this can be error prone, and so a complete specification of the desired logic
can be attained by “translating” from the natural language to a truth table. We will practice
that here, and will use problems involving three input variables.

Q9 : Suppose we have three boolean inputs, denoted Xo, X1, Xg. Fill in the following truth
table where the single output Y is determined as follows: if X has value 0, then Y takes
on the value of X5, but if Xy has value 1, then Y takes on the value of Xj.

row | Xo X1 Xo Y
0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

Q10 : Suppose we have three boolean inputs, denoted Xs, X1, Xy. Fill in the following truth
table where the two outputs Y7 and Y are determined as follows: if we interpret Y7Yj as
a two bit sequence, we want its value to be determined as the arithmetic sum of the three

single bit inputs (X2 + X1 + Xo).

row | Xo X1 Xp Y, Yo
0 0 0 0
1 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

1.4 Truth Table to Boolean Expression

The missing step, at this point, is how, in general, to go from a truth table to a boolean
expression. Consider your answers to Q3 and Q6 from earlier. If we focus on a single row
of the truth table in which the boolean output variable is 1, we should have been able to



arrive at a boolean expression (a term) involving an and of all the input variables or their
individual negation. Such an expression evaluates to 1 (true) exactly when the values of the
inputs correspond to their specified value in the row.

An example might help clarify. Consider row 3 from Q9. Since X is 1, Y should have output
1, since that is the value of X;. We desire a boolean term that is true (or 1) when X, X1, Xo
have the specified values, so when X5 is 0 and X is 1 and Xg is 1. The desired term is X2 X1 Xj.
Procedurally, we construct an and and use the negation of an input variable where the value in
the row is 0, and the positive sense of the input variable where the value in the row is 1. When
this boolean expression is true, the inputs correspond to that particular row of the truth table.
We call a term corresponding to a true/1 row of the truth table a minterm.

Q11 Write down all the terms corresponding to the rows where Y is 1 in your truth table for

Qo.

Q12 Write down all the terms corresponding to the rows where Y7 is 1 in your truth table for

Q10.

Q13 Write down all the terms corresponding to the rows where Yj is 1 in your truth table for

Q10.

Consider again your answers to Q1, Q3, Q5, and Q6. When we had just a single row with output
1, the English and the boolean algebra expression consisted of just the term corresponding to
the “true” row (i.e. the minterm). When more than one row had output 1, the English and
the boolean expression had to capture that the output was true when the inputs corresponded
to either one row or another row. This same reasoning generalizes when we have more input
variables and more rows in the truth table and more rows with an output of 1. The output is
true when any of the cases of the combination of the input variables correspond to that true
row. So, in general, an expression for an output can be constructed as the logical or of all the
minterms. Since a minterm is an and and we use product for and and we use addition of or,
this is a standard form known as Sum of Products (SOP).

Q14 Fill in the SOP boolean expression defining Y from your truth table for Q9.

Y =

Q15 Fill in the SOP boolean expression defining Y7 from your truth table for Q10.

Y| =

Q16 Fill in the SOP boolean expression defining Yy from your truth table for Q10.

Yy =



1.5 Simplification
Consider the following definition of boolean output Y:

Y = X9 Xo + X1 Xo

Q17 From the given definition, fill in the truth table corresponding to the definition of Y. 1
have added columns for the values of the terms in the expression to help the process.

row | Xo X1 Xo || XoXo | Xq1Xo Y
0 0 0
1 0 1
2 0 1 0
3 0 1 1
4 1 0 0
) 1 0 1
6 1 1 0
7 1 1 1

Q18 Now fill in the SOP boolean expression defining Y from your truth table.

Y =

Q19 Look carefully at the given definition of Y and your SOP-derived definition of Y. Do
you believe them to be equivalent? If so, try and reason and articulate how the simpler
form might be logically derived from the more complicated form. If not, explain why you
believe they are not equivalent.



