Let us use the four steps of induction to prove that \(\sum_{i=1}^{n} \frac{i(n+1)}{2} \).

Hypothesis:
For all \(n \geq 1 \), we hypothesize that \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \).

Base Case:
Show that \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) for \(n = 1 \).

\[
\text{LHS: } \sum_{i=1}^{n} i = \sum_{i=1}^{1} i = 1
\]

\[
\text{RHS: } \frac{n(n+1)}{2} = \frac{1(1+1)}{2} = \frac{2}{2} = 1
\]

Thus the LHS and RHS are the same and the equation holds for \(n = 1 \).

Assumption:
Assume that \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) holds true for values of \(1 \leq n \leq m \).

Induction:
Show that it holds true for \(n = m + 1 \), that is show \(\sum_{i=1}^{m+1} i = \frac{(m+1)(m+2)}{2} \).

\[
\sum_{i=1}^{m+1} i = \sum_{i=1}^{m} i + (m+1)
\]

\[
= \frac{m(m+1)}{2} + (m+1)
\]

\[
= \frac{m(m+1) + 2(m+1)}{2}
\]

\[
= \frac{m(m+1) + 2(m+1)}{2}
\]

\[
= \frac{(m+1)(m+2)}{2} \quad \text{QED}
\]
Consider the following code segment which adds the integers in an array.

ALGORITHM: sum_array
input: array a[1..n] of n integers
output: sum of integers in array placed in variable sum

1 sum = 0
2 for i = 1 to n
3 sum = sum + a[i]

Loop Invariant:
Before the start of the \(p \)th iteration of the loop, the variable \(\text{sum} \) contains the sum of the first 1..(\(p - 1 \)) elements of the array.

Initialization:
The loop invariant is true before the first iteration of the loop (true for \(i = 1 \)). Before the iteration of the first pass of the loop, \(\text{sum} \) is initialized to zero which is the sum of the first 0 elements of the loop. Thus the variable \(\text{sum} \) holds the correct sum before the first pass of the loop.

Maintenance:
If the loop invariant is true before the \(p \)th iteration, show that it is true before the \(p + 1 \)st iteration. Before the \(p \)th iteration of the loop, the loop invariant tells us that \(\text{sum} = a[1] + ... + a[p-1] \). During the \(p + 1 \)st iteration, we execute \(\text{sum} = \text{sum} + a[p] \) so that \(\text{sum} \) now holds the sum of the first \(p - 1 \) elements plus the \(p \)th element. This is the sum of the first \(p \) elements of the array. Thus before the start of the \(p + 1 \)st iteration, the variable \(\text{sum} \) holds the sum of the first \(p \) elements of the array.

Termination:
Show the loop invariant gives us a useful property upon termination. At termination, \(i = n + 1 \). Thus before the start of the \(n + 1 \)st iteration, the variable \(\text{sum} \) holds the sum of the first \(n \) elements of the array. This is the desired outcome of the algorithm and hence we have proven that this algorithm sums the contents of the array.