1. Why is an adjacency list representation used in BFS? (Consider the running time of the algorithm if an adjacency matrix is used instead.)

2. An Euler tour of a connected, directed graph $G = (V, E)$ is a cycle that traverses every edge in E exactly once (and each vertex at least once).

 (a) Prove that G has an Euler tour if and only if the in-degree of v is equal to the out-degree of v, for all $v \in V$.

 (b) Write a $O(m)$ time algorithm that finds an Euler tour of G, if one exists. (Hints: use DFS and merge a sequence of edge-disjoint cycles.)

3. Write an algorithm that detects whether an undirected graph is bipartite. This problem may also be described as the 2-color problem in which each vertex must be colored using two colors and the colors of adjacent vertices must be different. (Hint: Use BFS.)

4. Rewrite the DFS algorithm in your book so that it is iterative instead (but does exactly the same thing). (Combine the two separate functions into a single iterative function.)