Teaching Earthquake-Resistant Building Practices in Guatemala: Disseminating Existing Knowledge to the People Who Need it Most

David C. Greene, Dept. of Geosciences, Denison University, Granville OH 43023 greene@denison.edu

Teaching Earthquake-Resistant Construction

I developed a teaching presentation using a laptop computer and small portable projector that I could bring to rural villages.

I used photographs of local buildings and simple graphics with minimal captions to illustrate best practices with yes/no labels, and breakable models to demonstrate basic design principals.

Printed manuals with additional information and examples were provided to each attendee, for later reference and the possibility of propagating this information forward.

Even remote villages have sufficient electricity to run a small projector.

There was little difficulty in finding partners who could provide running translation into local and indigenous languages.

The most challenging aspect of this project was developing a working relationship with a local organization willing and able to assist with scheduling, publicity, and generally connecting me with appropriate audiences.

I am neither a builder nor an engineer, and made no preface to expert knowledge. However, the basic concepts are easily understood, and the new ideas were welcomed.

I used photographs of local buildings and simple graphics with minimal captions to illustrate best practices with yes/no labels, and breakable models to demonstrate basic design principals.

References


USGS, 2011, M 5.8 Guatemala Earthquake of 19 September 2011, Earthquake Summary Map.

Sacher, Tom, 2011, Quelques règles pour construire des maisons plus solides.

Sacher, Tom, 2011, Le béton et les blocs, Cours pour artisans, Manuel du formateur; Leçon préparée par le Centre de Compétence Reconstruction de la Coopération suisse en Haïti, avril 2011.


A Solution: Improving Building Practices at the Local Level

Earthquake-resistant building techniques have been developed using the concrete and masonry block construction typical in the developing world.

The principal technique - Confined Masonry - is highly effective for these non-engineered buildings, and requires only modest changes in customary design and building practices.

A major challenge remains in disseminating these techniques to the local builders who are responsible for most construction in rural areas.

Knowledge improves but earthquake fatalities keep increasing.

Most geoscience professors have spent years teaching about the geology of earthquakes, but geologic knowledge alone does not prevent fatalities.

Collapse of poorly constructed buildings in response to shaking still accounts for most casualties.

Improving Building Practices at the Local Level

Teaching Earthquake-Resistant Construction Using Confined Masonry

Suggesting a Solution:

Confined Masonry

Defining the Problem for the Audience

Slides from the presentation

Acknowledgements

Major funding provided by a grant from the Great Lakes College Foundation’s Disaster Mitigation Initiative program.

Logistical support in Guatemala provided by Mayan Families and organization.

Initial Concerns and Lessons Learned

What will I teach?
* that will be useful
* that I can learn well
Answer: Expert subject knowledge not necessary

How will I teach?
Can I learn enough Spanish to teach?
Answer: No, but unnecessary.
* Should I use a computer for presentations?
Answer: Yes! Simple graphics are universal.

Will anyone listen?
Answer: Yes. Opportunity to learn new techniques is much appreciated.

How will I contact my audience?
Answer: Need good local partners.
Takes time and effort to develop these.

Will what I can do make a difference?
Answer: Yes! Aim to train teachers and local leaders who can propagate the knowledge.

Major Conclusion: Any Experienced Teacher Can Do This!* with any issue you care about.

My experience suggests that effective teaching is the most critical tool for providing meaningful assistance with many geoscience-related issues.

Expert knowledge, fluency in local languages, years of experience and cultural insight are all useful but can be provided or developed through relationships with local partners.

Aim to train teachers and local leaders who can propagate the knowledge.

* Should I use a computer for presentations?
Answer: Yes! Simple graphics are universal.

* Should I learn enough Spanish to teach?
Answer: Yes. Opportunity to learn new techniques is much appreciated.

Can I learn well
* that will be useful
Answer: Expert subject knowledge not necessary

* Should I use a computer for presentations?
Answer: Yes! Simple graphics are universal.

How will I contact my audience?
Answer: Need good local partners.
Takes time and effort to develop these.

Will what I can do make a difference?
Answer: Yes! Aim to train teachers and local leaders who can propagate the knowledge.

Initial Concerns and Lessons Learned

What will I teach?
* that will be useful
* that I can learn well
Answer: Expert subject knowledge not necessary

How will I teach?
Can I learn enough Spanish to teach?
Answer: No, but unnecessary.
* Should I use a computer for presentations?
Answer: Yes! Simple graphics are universal.

Will anyone listen?
Answer: Yes. Opportunity to learn new techniques is much appreciated.

How will I contact my audience?
Answer: Need good local partners.
Takes time and effort to develop these.

Will what I can do make a difference?
Answer: Yes! Aim to train teachers and local leaders who can propagate the knowledge.

Major Conclusion: Any Experienced Teacher Can Do This!* with any issue you care about.

My experience suggests that effective teaching is the most critical tool for providing meaningful assistance with many geoscience-related issues.

Expert knowledge, fluency in local languages, years of experience and cultural insight are all useful but can be provided or developed through relationships with local partners.