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Bivalve mollusc shells contain valuable archives of biological and environmental information. For example,
periodic microgrowth increments record intra-annual growth rates that vary, in large part, as a function of
temperature. Unfortunately, these increments are often not preserved, or were deposited at equivocal
intervals, especially in fossils or shells with obscure increments. Here we present a new numerical model that
reconstructs intra-annual growth rates by relating linear growth and time using oxygen isotopes from shell
carbonate. The model involves converting observed oxygen isotope values from shell carbonate (δ18Ocarb) to
temperatures, which requires knowledge of the oxygen isotope composition of water (δ18Owater). Then
calculated temperatures are converted to dates using temporally calibrated temperature records. Next, dates
are plotted versus sample distance (measured from sampled shells), fit with a monotonic cubic spline, and
finally the first derivative of this function is evaluated yielding the growth function. The variance of this
function is estimated through resampling by incorporating the uncertainty associated with δ18O
measurement (e.g., ±0.08‰). This numerical model produces a distribution of growth functions, from
which we calculate the average growth function. Modeled growth functions agree well with independently
derived growth functions, which suggests our modeling procedure produces reliable estimates of intra-
annual growth rates. These data can, in turn, provide valuable ecological information, such as the timing of
highest intra-annual growth rates, growth-limiting temperatures, and optimal growth temperatures. This
final parameter is particularly important because optimal growth temperatures can now be estimated
without any a priori knowledge of growth rates.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The accretionary skeletons of bivalve molluscs are an important
source of environmental, biological, and evolutionary information
(Wefer and Berger, 1991; Jones and Gould, 1999; Richardson, 2001;
Goodwin et al., 2008a). The rate and timing of growth are controlled by
numerous factors: temperature (Jones et al., 1989; Schöne et al., 2002a),
salinity (Koike, 1980), age (Jones et al., 1989), reproductive cycle (Sato,
1995), tidal cycle and intertidal position (Ohno, 1989; Goodwin et al.,
2001), and nutrient availability (Coe, 1948; Schöne et al., 2003).
Temperature, however, appears to be dominant among the factors
controlling intra-annual growth rates of most species (Koike, 1980;
Goodwin et al., 2001; Schöne et al., 2002a). Traditionally, counts and
measurements of periodic microgrowth increments, often a function of
the tidal cycle (Richardson, 2001), have been used to reconstruct
temperature dependant intra-annual growth rates. Unfortunately, these
increments are often not preserved, or were deposited at equivocal
intervals, making this approach difficult, especially in fossil specimens.
in), paulp@denison.edu (P. Paul),

ll rights reserved.
Several recent studies have used oxygen isotope (δ18O) profiles to
model bivalve mollusc shell growth. Ivany et al. (2003) used a best-fit
sinusoid model, developed by Wilkinson and Ivany (2002) and later
modified by De Ridder et al. (2007), to resolve average annual isotopic
ratios, seasonal variation of isotopic ratios, and shell growth rates. De
Ridder et al. (2004) developed amodel to convert the distance scale to
a time-scale by taking advantage of strong periodicity (likely annual)
in observed δ18O profiles. A similar approach was employed by Elliot
et al. (2003), who used a modeling approach to stretch distance axes
in order to compare geochemical profiles from multiple specimens.
These studies demonstrate the utility of modeling approaches for
understanding inter-annual growth of biogenic hard parts. Goodwin
et al. (2003) modeled intra-annual shell growth to document various
patterns of isotopic variation associated with senescence. This study,
however, relied heavily on a priori knowledge of intra-annual growth
rates based on increment width counts. To overcome this limitation,
we present a novel mathematical method that relates shell growth
and time using δ18O variation to reconstruct intra-annual growth rates
in bivalve molluscs.

The concept is straightforward: the first derivative of a function
relating cumulative linear growth to time represents intra-annual
growth rate—the growth function. In practice, this technique involves
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Fig. 1. Flow chart outlining the steps, inputs, and parameters used in the MoGroFunGen
model.

48 D.H. Goodwin et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 276 (2009) 47–55
converting observed oxygen isotope ratios from shell carbonate
(δ18Ocarb) to temperatures, which requires knowledge of the oxygen
isotopic composition of water (δ18Owater). Then calculated tempera-
tures are converted to dates using temporally calibrated temperature
records. Next, dates are plotted versus sample distance (measured
from sampled shells), and fit with a monotonic cubic spline. Finally,
the first derivative of this function is evaluated. This procedure is then
repeated by incorporating the uncertainty associated with δ18O
measurement (e.g., ±0.08‰). The numerical model produces a
distribution of growth functions, from which the average growth
function is calculated. These data can, in turn, provide valuable
ecological information, such as the timing of highest intra-annual
growth rates, growth-limiting temperatures, and optimal growth
temperatures. This final parameter is particularly important because
optimal growth temperatures can now be estimated without any a
priori knowledge of growth rates.

2. Materials and methods

2.1. Specimens and environmental data

We applied our model to three specimens of Chione (Chionista)
cortezi collected from the Colorado River delta in the northern Gulf
of California. All specimens were collected alive: IP1-A1R was
collected from Isla Pelicano (31° 45.7′ N, 114° 38.9′ W) in 1995, and
IM11-A1L and IM11-A2L were collected from Isla Montague (31° 40.2′
N, 114° 41.4′ W) in 2000. Additional details on these localities are
available in Goodwin et al. (2001) and Goodwin et al. (2003). The
shells are housed in the CEAM research collection in the Department
of Geosciences at the University of Arizona.

Specimens were sacrificed immediately after collection and the
flesh was removed. In the lab, valves were sectioned along the dorso-
ventral axis of maximum shell height, and thick sections were
mounted on microscope slides. Carbonate samples, each with a
mass between 50 and 100 μg, were drilled from the prismatic layer.
We sampled the second year of growth from IP1-A1R and the third
year from IM11-A1L and IM11-A2L. Isotopic analyses of carbonate
from IP1-A1R were performed on a Finnigan MAT 252 mass spectro-
meter equipped with at Kiel III automated sampling devise. Samples
from IM11-A1L and IM11-A2L were performed on a Micromass
Optima IRMS with a common acid-bath autocarbonate device.
Additional details on analytical procedures can be found in Goodwin
et al. (2001) and Goodwin et al. (2003). Results are reported in δ
notation (‰) by calibration to the NBS-19 reference standard (δ18O=
−2.20‰ VPDB). Regardless of which machine was used, repeated
analysis of laboratory standards resulted in standard deviations of
±0.08‰.

Microgrowth increment widths, which were deposited in response
to the tidal cycle (Richardson, 2001), were measured from the same
plane as the δ18O samples. Thick sections were polished and then
etched in aweak acid (Goodwin et al., 2001). This procedure results in
differential dissolution of growth lines and growth increments sensu
Richardson et al. (1981). Increments were photographed under
inclined reflected light and widths were measured from digital
images. The increment width profiles from IM11-A1L and IM11-A2L
were directly dated by Goodwin et al. (2001). The increment width
profile from IP1-A1R was roughly calibrated with time by centering it
on the midpoint of the year (Goodwin et al., 2003).

Our temperature model is based on data recorded from the IM11
collection site (Goodwin et al., 2001). Temperatures were recorded
every 2 h for a complete year (10:00 AM, February 16, 1999 to
10:00 AM, February 16 2000). Two loggers (HOBO® Temp: resolution
and accuracy ~0.5 °C) were deployed and their respective records
were significantly correlated (r2=0.995, pb0.01). Here we use
average daily temperatures calculated from one of the two tempera-
ture records. Logger uncertainty was not included in the model.
2.2. MoGroFunGen: Explanation of the model

The model presented here, MoGroFunGen, or the Mollusc Growth
Function Generator, is designed to extract intra-annual growth curves
from bivalve mollusc shells. Our approach is similar theoretically to



Fig. 2. Annual temperature model (Parameter 3). The dots show average daily
temperatures. The solid line is the smooth daily temperature model (Input 3). See text
for discussion.

49D.H. Goodwin et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 276 (2009) 47–55
the method devised by Schöne et al. (2002b). However, whereas they
used growth rates to reconstruct sea-surface temperatures, here we
use the relationship among temperature, δ18Ocarb, and sample dis-
tance to reconstruct intra-annual growth rates. The model was imple-
mented in Mathematica 6.0™, and the source code is available on
request.

2.2.1. Parameters and Inputs
The model incorporates three parameters, three inputs, and

involves seven steps (Fig. 1). Parameter 1 is the uncertainty associated
with repeated analysis of laboratory standards (here ±0.08‰).
Parameter 2 is a static δ18Owater value. We used a value of 0‰ based
on observations from the northern Gulf of California (Goodwin et al.,
2001). Parameter 3 is average daily temperatures (°C) for a complete
year (365 days) (Fig. 2).

The first input (Input 1) consists of measured δ18Ocarb values from a
single year of shell growth and the cumulative distance (μm) between
sample holes (Fig. 3; Appendix A). Input 2 is a paleotemperature
equation. Here we used Eq. (1) from Grossman and Ku (1986):

T BC
� �

= 20:6− 4:34 δ18Ocarb − δ18Owater − 0:2
� �� �

: ð1Þ

This equation suggests that each 4.34 °C change in temperature
results in a onepermil shift in shell carbonate. Finally, Input 3 is a smooth
daily temperature model derived from Parameter 3. The smooth daily
temperature model has twomonotonic intervals: an increasing interval
from the coldest to the hottest day of the year (spring), and a decreasing
interval from the hottest to the coldest day of the year (autumn) (Fig. 2).
Smoothing is carried out by expressing the temperature profile as a
Fourier series and then retaining the 0th (average), 1st and 2nd
harmonics. While truncating the series after the 1st harmonic results in
Fig. 3. δ18Ocarb versus distance data from the three specimens used in this study. Dots define t
reconstruct doubly monotonic profiles. See text for discussion.
an unambiguously doubly monotonic sinusoid, it fails to capture the
significant asymmetry present in many temperature profiles. The
resulting function implies that no more than two values of time
correspond to each temperature value, one in spring and one in autumn.

2.2.2. Modeling procedures
In the first step of the model (Fig. 1), we ensure that the δ18Ocarb

profile has two monotonic intervals—a decreasing interval (increasing
temperature) and an increasing interval (decreasing temperature)—by
cullingpoints from themeasuredδ18Ocarb versus distancedata set (Fig. 3).
Weuse themost negative δ18O value,which represents the hottest part of
the summer, to separate the two intervals. Then successiveδ18Ocarb values
in each interval are compared and samples that result in monotonic
trends are retained (Fig. 3). Themodel produces similar output regardless
of which points are discarded (see Section 4.2).

Next, the doubly monotonic δ18Ocarb profile is resampled to
generate additional profiles (Step 2; Fig. 1). Given sampling error
and precision error of the mass spectrometer (±0.08‰), it is assumed
that the observed doubly monotonic δ18Ocarb profile is an estimate of
the specimen's true isotopic profile. We therefore generated a
distribution of estimated isotopic profiles by first assuming that
each observed δ18Ocarb value is a mean estimate of a normal
distribution of δ18Ocarb values for that particular interval of time,
and then resampling from the distributions using a standard deviation
of 0.08‰ (parameter 1; Fig. 1). A pseudorandom number generator
was used to produce N data sets from these independent normal
distributions. Each resulting data set, conceptually, is the possible
result of a new measurement of carbonate from each drill hole.
Resampled δ18Ocarb versus distance data sets that are not doubly
monotonic are discarded, and the procedure is repeated until the
desired number (N=50000) is reached.

In Step 3, δ18Ocarb values from the resampled data sets are
converted to temperatures using Eq. (1) (Input 2). This straightfor-
ward procedure, of course, requires knowledge of δ18Owater values.
Because the model is designed to be used with marine molluscs, we
assume relatively little variation of the oxygen isotopic composition of
sea water and, therefore, use a static δ18Owater value (Goodwin et al.,
2001). Future modifications of the model will incorporate dynamic
δ18Owater values (Goodwin et al., 2008b).

Step 4 involves converting temperatures to Julian dates (1–365)
using the smooth daily temperature model (Input 3). This step is
somewhat more complicated than step 3 because temperature may
assume a given value on two occasions during the year—once in the
first part of the year (= before the hottest day of the year) and again in
the second (= after the hottest day of the year). To circumvent this
ambiguity, themodel assumes a pattern of temperature variationwith
monotonically rising temperatures in the spring and falling tempera-
tures in autumn. The model, therefore, assigns the first solution
(spring date) to the initial δ18Ocarb sample. This procedure continues
until themaximum temperature (minimum δ18Ocarb value) is reached,
at which point the two solutions are closest to each other in time. The
he original complete data sets (see Appendix A). The bold lines connect samples used to
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model then assigns a date to the maximum temperature by using the
average of these two solutions (spring and autumn). Finally, the
remaining temperatures are assigned dates, all of which are after the
hottest day of the year. Recall that distance data (cumulative distance
between sample holes) is part of Input 1. Therefore, on completion of
Step 4, we have N sets of monotonically increasing distance versus
date data sets, with as many points in each set as in the culled δ18Ocarb

versus distance data set.
In Step 5, a monotonic spline is fit to each of the distance versus

time data sets. This curve fitting procedure results in a continuous
monotonic function that passes through all of the points in each of the
N distance versus date data sets. Additional details of the monotonic
cubic spline can be found in Appendix B. We use this spline function
for several reasons. First, practical considerations usually limit the
number of samples in an isotopic profile to between 10 and 20
samples per year and the assumption of constant growth rate
(equivalent to linear interpolation) between points is unrealistic
(Goodwin et al., 2001). However, given enough δ18Ocarb samples, the
results obtained using linear interpolation would converge on those
obtained using the monotonic cubic spline. Second, because δ18Ocarb

values represent actual observations on the distance versus time
curve, a low-order polynomial fit with a least-squares technique
would likely fail to incorporate all of the observations. A spline
function, on the other hand, passes through each point in the distance
versus date data set, thereby, preserving all of the observed data.
Finally, unlike a monotonic cubic spline, a simple cubic spline or a
high-order polynomial, while also passing through all of the observed
points, can produce intervals with negative slopes. This would imply a
biologically impossible scenario where distance along the sampled
profile decreases through time (but see Lutz and Rhoads, 1980). The
monotonic cubic spline produces a function consistent with clam
growth, where new shell material is added to the commissure.

Next, we evaluate the first derivative of the N distance versus time
functions, which represents the growth rate as a function of time—the
growth function (Step 6; Fig. 1). This step results in N growth func-
tions derived from the initial δ18Ocarb versus distance data set.

Finally, in Step 7, we calculate a moving average for each of the
resampled growth functions. We use a 28-day window width to
Fig. 4. Modeled and observed growth functions from the three specimens used in this study
Bold lines are averages of the 50000 smoothed growth functions. Shaded areas show one
increment width profiles from IP1-A1R, IM11-A1L, and IM11-A2L, respectively. Bounding line
calculate the moving average because it is often difficult to assign
calendar dates to tidal increments with a precision greater than± one
fortnight (Koike, 1980; Goodwin et al., 2001). We then calculate an
overall average function from the 50000 smoothed growth functions.
The advantage of Step 7 is that, not only does it generate an average
growth function, but it also results in an uncertainty envelope. One
could argue that the resampling procedure (Step 2) is unnecessary
because the average growth function, which is based on a large
number of resampled profiles, converges on the growth function that
would be obtained by fitting a monotonic cubic spline to the original
δ18Ocarb versus distance data set. However, without multiple growth
functions it would be extremely difficult to evaluate the variability of
the modeled growth function.

3. Results

Model output from the analyses of the δ18Ocarb versus distance
data sets from the three specimens examined in this study are shown
Fig. 4 and Table 1. Fig. 4A–C show the average predicted increment
width (PIW) profiles with one standard deviation envelopes for IP1-
A1R, IM11-A1L, and IM11-A2L, respectively. The profiles are based on
the 50 000 PIW values for each respective day of the year. For
comparison purposes, Fig. 4D–E show measured increment width
(MIW) profiles with a 28-day moving maxima and minima from IP1-
A1R, IM11-A1L, and IM11-A2L, respectively. For detailed discussion of
these MIW profiles see Goodwin et al. (2003) (IP1-A1R) and Goodwin
et al. (2001) (IM11-A1L and IM11-A2L). Table 1 shows a slightly
different set of data derived from the model output. It presents the
average and standard deviations of dates and/or magnitudes of
specific features in the PIW profiles. For example, the average first
day of growth from the 50000 PIW profiles was 41±5. Corresponding
values from the MIW profiles are also given. (Note: the data in Table 1
cannot be read from Fig. 4A–C.).

Several general patterns emerge from these data. The model results
suggest that, for each specimen, little or no growth occurred during the
first part of the year (Fig. 4A–C). The first day of growth was between
Julian day 41±5 and 56±5 and the first day inwhich growth exceeded
1 μm was between 54±5 an 59±5 (Table 1). Similarly, growth halted
. (A–C) Modeled growth functions from IP1-A1R, IM11-A1L, and IM11-A2L, respectively.
standard deviation envelopes. PIW = Predicted Increment Widths. (D–E) Observed
s show 28-day moving maximum and minimum. MIW=Measured Increment Widths.



Fig. 5. Modeled predicted increment widths (PIW) versus Julian day for the three
specimens. IP1-A1R: black line; IM11-A1L: grey line; IM11-A2L: dotted line.

Table 1
Comparison of model output and observed aspects of growth functions from the three
specimens examined in this study.

Growth function
characteristic

IP1-A1R IM11-A1L IM11-A2L

Modeled Observed Modeled Observed Modeled Observed

First day of
growtha

41±5
(54±5)b

19 53±5
(54±5)

91 56±5
(59±5)

91

Last day of
growtha

336±3
(334±3)

346 320±2
(318±2)

330 331±3
(328±3)

302c

Duration of
growtha

296 (280) 328 268 (265) 240 276 (270) 212

Date of
maximum
growtha

153±20 116 171±10 176 171±29 131

Maximum daily
growth (μm)

466±260 347 278±96 201 242±101 238

Temp. on max.
growth day (°C)

25±2 NA 27±1 NA 26±2 NA

aJulian day.
bFirst value is non-zero growth; second value is growth N1 μm.
c0.82 mm from commissure. See Goodwin et al. (2001) for discussion.
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before the last day of theyear. The last day of growthwas between 320±
2 and 336±3 and the last day with growth greater than 1 μm was
between 318±2 and 334±3 (Table 1). The data suggest that these
specimens did not grow throughout the year, but rather deposited shell
material in the spring, summer, and fall, and shutdown during the
coldestwintermonths. This is similar to thepattern observed in theMIW
profiles. If C. cortezi grew throughout the year, we would expect ~352
increments—the number of lunar days in one solar year. However, only
328, 240, and 212 increments were observed in IP1-A1R, IM11-A1L, and
IM11-A2L, respectively (Table 1). Furthermore, shell deposition in IM11-
A1L and IM11-A2L, which was temporally calibrated by Goodwin et al.
(2001), began in lateMarchor early April and ended in late November or
early December.

The maximum predicted increment widths are similar to the
measured increment widths (Fig. 4 and Table 1). In each case, the
maximum MIW is within one standard deviation of the maximum
PIW (Table 1). The maximum PIW and MIW from IP1-A1R are larger
than those from either of the other specimens (Table 1). That IP1-A1R
has the largest increments is expected because it was the ontogen-
etically youngest specimen and therefore would have had the highest
growth rate (Jones et al., 1989).

Similarly, the reconstructed growth function from IP1-A1R suggests
it grewmore throughout the year than either of the IM11 shells. Fig. 5
shows all three modeled growth functions. The area under each curve
represents the total linear growth between the first and last δ18Ocarb

samples. Integration of these functions shows that IP1-A1R grew
over 41 mm, whereas IM11-A1L and IM11-A2L grew approximately
19 and 21 mm, respectively (see Fig. 3; Appendix A). Again, this is
not surprising because IP1-A1Rwas younger and therefore likely grew
faster.

The shapes of the three modeled profiles are also broadly similar
(Fig. 4A–C). In each case, the beginning of the profile is characterized
by zero growth. Following the initiation of shell deposition, growth
rates increase rapidly. In IP1-A1R, this pattern continues until the
maximum growth rate is reached. In the other shells, the increase in
growth rate is not monotonic, but is characterized by a pronounced
pulse of growth centered around Julian day 80 followed by rapidly
increasing growth rates. After the maximum predicted growth rates,
which occurs in the first half of the year in all three profiles, the
growth rate decreases gradually. This pattern is best seen in IP1-A1R
and IM11-A2L (Fig. 4A and C). In IM11-A1L, however, growth
decreases rapidly to a minimum near Julian day 225 (Fig. 4B). A
similar, albeit less pronounced, local minimum is seen in IM11-A2L
predicted increment width profile (~Julian day 240; Fig. 4C). In each of
the IM11 shells, growth rates then rebound to values around 80 μm
between Julian 280 and 290. An increase in PIW is also present around
Julian day 240 in the IP1-A1R profile, although it is not as distinct.
Finally, predicted growth rates in all the shells declines to zero around
Julian day 325.

The measured increment width profiles show a similar pattern
(Fig. 4D–F). Following the initiation of growth, increment widths
increase rapidly in all three specimens. After deposition of the widest
increments, the profiles are characterized by gradually declining
widths. This pattern is interrupted by an abrupt decrease in increment
widths, which is most clearly shown by the IM11 shells (Fig. 4E and F).
This interval with narrow increments is followed by a relatively short-
lived increase and then a gradual decline in all three specimens.
The latest increments counted from each specimen are very narrow
and were the last increments formed during their respective years of
growth.

The one standard deviation envelopes about the average predicted
incrementwidth profiles show several consistent patterns (Fig. 4A–C).
First, the highest standard deviations are generally associated with the
largest increments. Second, the narrowest predicted increments have
the lowest standard deviations. Third, the interval of rapidly
increasing PIWs prior to the maximum PIW is characterized by
relatively low standard deviations. Finally, there are two intervals
characterized by large standard deviations. The first, mentioned
above, coincides with the maximum PIWs. The second is associated
the final interval of increasing widths (Fig. 4A–C).

4. Discussion

The preceding section illustrates the overall similarity between the
predicted increment width profiles and the measured increment
width profiles. In particular, the modeled growth profiles provide
good estimates of the timing of initiation as well as cessation of
growth, the duration of growth, and the maximum growth rate (Table
1). Furthermore, the shape of the modeled intra-annual growth
profiles generally reflects the observed growth pattern (Fig. 4).

4.1. Modeled versus observed growth functions

The most obvious difference between the predicted and measured
profiles is that the modeled growth functions are relatively smooth,
whereas the measured profiles show significant high-frequency
variation associated with the tidal cycle (Fig. 4). Using data from
IM11-A2L, Schöne et al. (2002b) showed that this high-frequency
variation can be filtered from the MIW profile. The result is a filtered
growth curve that is virtually identical to our modeled PIW profile
from the same specimen (compare our Fig. 4 with Fig. 3d from Schöne
et al., 2002b). Both growth curves show a rapid increase in growth rate
around Julian day 100, maximum increment widths of approximately
175 μm at day 150, a decline to narrow increments (~50 μm) around



Fig. 6. Predicted increment width profiles from IM11-A1L based on three different
δ18Ocarb versus distance data sets. Run 1: black line; Run 2: grey line; Run 3; dotted line.
See Appendix A and text for discussion.
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day 250, a short-lived increase to a local maximum prior to day 300,
and finally a cessation of growth prior to day 350. The coincidence of
these independently derived growth functions (one based on our
modeling procedure and the other derived directly from measured
increment widths) provides further evidence that our modeling
approach provides reliable estimates of the true intra-annual pattern
of growth.

There is, however, one significant difference between the growth
function from the Schöne et al. (2002b) analysis and the one obtained
here, namely the initial pulse of growth on the modeled growth
function around Julian day 80 (Fig. 4C). This interval of growth is not
present on the Schöne et al. (2002b) growth function, despite the fact
they are derived from the same shell. Recall that a similar growth
pulse is shown on the PIW profile from IM11-A1L (Fig. 4B). What,
then, is responsible for this apparent pulse of growth in the modeled
profiles?

The original δ18Ocarb versus distance data from IM11-A1L and
IM11-A2L are shown in Fig. 3B and C, and Appendix A. The δ18Ocarb

samples define one complete cycle of isotopic variation—from one
positive peak to the next. Using a temporally calibrated daily
increment width profile, Goodwin et al. (2001) assigned calendar
dates to the δ18Ocarb samples in both profiles. In each case, dates were
assigned to all but the first two δ18Ocarb samples. These undated
samples were separated from the remaining samples by a winter
growth break (see Goodwin et al., 2001 for discussion), and therefore
were taken from the end of the second year of growth, whereas the
remainder of the samples were taken from the third. These samples,
therefore, were collected fromdifferent years of growth separated by a
winter growth break. Inclusion of the undated samples in the δ18Ocarb

versus distance data set likely forces the model to incorporate the
latest growth from the previous year into the PIW profile, resulting in
the small local peaks centered around Julian day 80 (Fig. 4B and C).
The PIW profile from IP1-A1R does not show this initial pulse of
growth (Fig. 4A), suggesting all of the δ18Ocarb samples were deposited
during the same year (Fig. 3A).

These data highlight the fact that, ideally, only samples deposited
in a single year of growth should be included in the original δ18Ocarb

versus distance data set as part of Input 1. However, in the absence of
dated δ18Ocarb samples, as would be the case when working with
fossils or specimens with equivocal increments, we would input
δ18Ocarb versus distance data that defines a complete peak-to-peak
isotopic cycle. These observations suggest our model is somewhat
sensitive to the initial choice of δ18Ocarb input to the model.

4.2. Model sensitivity to changes of Input 1

To evaluate the effect of using different samples as part of Input 1,
we comparedmodeled growth functions from three different analyses
of the original δ18Ocarb versus distance data set from IM11-A1L
(Fig. 3B, Appendix A). In each model run, we selected a different set of
δ18Ocarb values to construct a new δ18Ocarb versus distance profile
(Appendix A). The first run used the values selected to define the
original doubly monotonic δ18Ocarb versus distance profile shown in
Fig. 3B. The other two δ18Ocarb versus distance profiles were also
doubly monotonic, but they were defined using different δ18Ocarb

values. For example, rather than retaining the first three points and
then discarding the forth, as is shown in Fig. 3B, we retained the first
two points, discarded the third and retained the forth, etc. In this way,
three different doubly monotonic δ18Ocarb versus distance data sets
were constructed (Appendix A). There were, however, intervals in
which the same points were retained in each δ18Ocarb versus distance
data set. For example, δ18Ocarb samples 1, 2, 5, 6, 10,14–16were used in
all three model runs (Appendix A).

The PIW profiles based on three different δ18Ocarb versus distance
data sets are shown in Fig. 6. The overall shape of the growth functions
is very similar: each is characterized by three distinct pulses of
growth. Because δ18Ocarb samples one and two were retained in all
three δ18Ocarb versus distance data sets, the first peak represents
growth from the previous year (see above). Together the second and
third pulses of growth are similar to MIW profiles from IM11-A1L and
the filtered growth profile of Schöne et al. (2002b).

These modeled profiles suggest that, regardless of which points are
retained from the original δ18Ocarb versus distance data set, our model
produces consistent results. Some of the similarity certainly reflects the
fact that the three doubly monotonic δ18Ocarb versus distance data sets
contain many of the same individual δ18Ocarb samples (Appendix A).
However, the similarity of these profiles also suggests that the model
will produce reliable results regardless of where samples are collected
from shell. This is an important result because it means that no special
sampling protocol is required.

4.3. Reconstructing optimal growth temperatures

In addition to reconstructing aspects of intra-annual growth, the
PIW profiles can be used to identify optimal growth temperatures. In
Fig. 7A the PIW profiles from IP1-A1R, IM11-A1L and IM11-A2L have
been scaled by their respective maximum growth rates so that
increments widths range between zero and one. To illustrate the
relationship between PIWs and temperature, the smooth daily
temperature model (Input 3) is also shown. Notice that the growth
rates in all three profiles increases dramatically between Julian day
110 and 170. This interval of rapidly increasing predicted increment
widths occurred when temperatures were between 20 and 27 °C.
Similarly, maximum growth rates (Julian day 140 and 170) correspond
to temperatures between 23 and 27 °C. When temperatures rise above
27 °C growth rates decline and when they rise above 29 °C growth
rates decline precipitously. At the warmest temperatures of the year
(~31 °C around Julian day 225), growth rates decline to a temporary
minimum. This phenomenon most clearly seen in profiles from IM11-
A1L and IM11-A2L although a local minimum is also present in
the PIW profile from the ontogenetically younger specimen IP1-A1R
(Fig. 7A). As temperatures begin to decline in autumn, growth rates
increase again. When temperature is between 27 and 20 °C the IM11
shells show a pulse of growth. Finally, as temperatures cool below
~19 °C growth rates decline to zero.

The relationship between temperature and predicted increment
widths is shown slightly differently in Fig. 7B. Here, normalized PIWs
are plotted as a function of temperature. This graph suggests that in C
(C.) cortezi little shell deposition occurs when temperatures are below
~15 °C. Growth rate increases dramatically when water temperatures
rise above approximately 20 °C, maximum growth rates occur be-
tween 23 and 27 °C, and little shell deposition occurs when temper-
atures are above ~30 °C.



Fig. 7. Scaled predicted increment width profiles from the three shells analyzed in this
study. (A) Scaled PIWprofiles as a function of time. The smooth daily temperaturemodel
(Input 3) is also shown. (B) Scaled PIW profiles as a function of temperature. IP1-A1R:
black line; IM11-A1L: grey line; IM11-A2L: dotted line. In each panel the shaded area
shows independently derived optimal growth temperatures. See text for discussion.
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Optimal growth temperatures can also be estimated using the
50000 resampled profiles. Furthermore, whereas only a single
estimate of optimal growth temperatures can be derived from the
average PIW profile, the 50000 resampled profiles can also be used to
calculate its variance. In this case, the estimated optimal growth
temperatures range from 25±2 to 27±1 °C (Table 1). These
estimates were obtained by calculating the average of the daily
temperatures on the day of maximum growth from each of the 50000
resampled profiles from each shell.

These observations agree well with two independently derived
estimates of optimal growth temperatures for C (C.) cortezi. Goodwin
et al. (2001) suggested that growth rates were fastest when temper-
atures were between 23 and 26 °C, whereas Schöne et al. (2002a)
postulated that optimal growth occurred between 21 and 24 °C. In
Fig. 7A and B the combined optimal growth range from Goodwin et al.
(2001) and Schöne et al. (2002a) (21 and 26 °C) is shown in the shaded
area. The optimal growth temperatures derived from the PIW profiles
are 23 to 27 °C, and 25±2 to 27±1 °C from the 50000 resampled
profiles. The overlap of these independent estimates suggests our
modeling procedure produces reliable estimates of optimal growth
temperatures.

4.4. Applications of the model

That the MoGroFunGen model can identify optimal growth
temperatures is particularly significant. Using only a δ18Ocarb versus
distance data set, a static δ18Owater, and a temperature model,
MoGroFunGen successfully reconstructs when and under what
conditions the clams grow fastest. Recall that no direct measures of
growth rates are used to construct the predicted increment width
profiles. This model, therefore, is a “value-added” analytical proce-
dure: it can be easily applied to isotopic profiles to generate additional
ecological data at little or no additional expense.

Furthermore, model output may also be used to identify the
influence of factors other than temperature that control intra-annual
growth. Notice that temperatures are in the optimal range twice
during the year, once in the spring and again in the fall (Fig. 7). If
temperature were the sole factor governing growth, PIWs during
these two intervals should be the same. However, growth rates are
much higher in the first part of the year. This observation suggests that
a factor other than temperature influenced growth. The next step then
would be to correlate the PIW profiles with time-series of other
environmental factors to determine how they affect growth rates.
And, in fact, Schöne et al. (2002b) and Schöne et al. (2006) suggest
that, in C (C.) cortezi, intra-annual growth rates are correlated with
phytoplankton abundance, which suggests nutrient concentrations
also affect growth rates.

Documenting optimal growth temperatures can be a useful tool in
modern natural history studies. For example, reconstructed optimal
growth temperatures can be compared across a taxon's geographic
range to identify regional differences in environmental preferences
(Jones and Quitmyer, 1996). Optimal growth temperatures could also
be combined with oceanographic models to predict how different
species will respond to environmental change.

Application of the MoGroFunGen model to fossils may also yield
valuable paleoenvironmental, paleoecological, and evolutionary infor-
mation. To do this, of course, requires knowledge of intra-annual
temperature variation as well as the isotopic composition of the water.
However, in most circumstances, unless using independent paleoenvir-
onmental proxies, these parameters are unknown. Nevertheless, by
using the same set of realistic environmental parameters, predicted
increment width profiles could easily be compared within and across
evolutionary lineages in space and/or time. These data, in turn, may be
used to document how environmental tolerances change within a
lineage or to determinehowenvironmental conditionsaffect the growth
of contemporaneous species.

Finally, while MoGroFunGenwas originally conceived to reconstruct
the intra-annual growth of bivalve molluscs, there is no reasonwhy the
modeling approachproposedhere couldnot beapplied to other archives
with accretionary growth (biogenic or otherwise). This method, there-
fore, may become an important tool in the study of growth rates in
general.

5. Conclusions

Here we present a numerical model (MoGroFunGen: Mollusk
Growth Function Generator) that relates linear growth and time using
stable oxygen isotopes to reconstruct intra-annual growth rates in
bivalve molluscs. We applied our model to three shells collected in the
northern Gulf of California. From these analyses the following con-
clusions are drawn:

1. Many aspects of the predicted increment width profiles closely
match observed patterns of intra-annual growth. These similarities
include the dates of initiation and cessation of growth, the duration
of growth, the date of maximum growth, and the maximum daily
increment width.

2. The overall shape of the predicted increment width profiles is
similar to the observed pattern of intra-annual growth. Little or no
shell deposition occurs in the earliest part of the year. The widest
increments are deposited in the spring. Increment widths decrease
dramatically during the hottest part of the year. When tempera-
tures fall in the autumnwidths partially rebound and then decrease
to zero in the last part of the year.

3. Only samples deposited in a single year of growth should be in-
cluded in the original δ18Ocarb versus distance data set. However, in
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the absence a priori knowledge of growth patterns, the δ18Ocarb

versus distance data should be taken from a single isotopic cycle.
The model is somewhat sensitive to the initial choice of δ18Ocarb

samples input to the model.
4. MoGroFunGen is relatively insensitive, however, to which points in

the original δ18Ocarb versus distance data set are used to define
Input 1. This observation suggests that no special sampling col-
lection protocol is required when initially drilling a specimen.

5. The model provides reasonable estimates of optimal growth tem-
peratures. This finding is especially significant because estimated
optimal growth temperature are derived solely from δ18Ocarb versus
distance data, a static δ18O water value, and a temperature model,
without any a priori knowledge of growth rates. Furthermore, the
predicted increment width profile can easily be correlated with
records of environmental variation other than temperature to
determine how they affect growth rates.

6. The MoGroFunGen model may be a valuable new source of ecol-
ogical and paleoecological information on the growth of bivalve
mollusks as well as other organisms/archives with accretionary
skeletons.
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Appendix A. δ18Ocarb vs. distance data

δ18Ocarb versus distance data from the three specimens examined
in this study. The superscripted numbers following the oxygen isotope
values from IM11-A1L represent the values retained when construct-
ing three different versions of Input 1 (see Section 4.2).
Sample No.
 IP1-A1R
 IM11-A1L
 IM11-A2L
δ18O
 Dist.a
 δ18O
 Dist.a
 δ18O
 Dist.a
1
 0.96
 0
 0.731,2,3
 0
 0.66
 0

2
 −0.43
 4139
 0.341,2,3
 1972
 0.38
 556

3
 −0.11
 6456
 −0.771,2
 3873
 0.06
 1296

4
 −0.59
 8609
 −0.433
 5352
 −0.70
 2161

5
 −0.91
 11258
 −1.451,2,3
 7042
 −0.61
 2778

6
 −0.63
 13410
 −1.751,2,3
 8803
 −0.43
 3457

7
 −1.05
 15562
 −1.861,3
 10352
 −1.16
 5617

8
 −1.77
 20529
 −1.862
 12113
 −1.53
 7716

9
 −1.95
 24834
 −1.80
 13380
 −1.92
 9568

10
 −2.21
 27483
 −2.041,2,3
 14366
 −1.88
 11235

11
 −2.07
 30298
 −2.051,2
 15141
 −1.65
 13395

12
 −1.85
 32947
 −1.652
 15704
 −2.03
 15247

13
 −2.23
 35264
 −1.971,3
 16197
 −1.23
 15741

14
 −2.05
 37086
 −1.261,2,3
 16761
 −1.45
 16296

15
 −1.33
 38245
 −0.471,2,3
 18239
 −1.64
 16852

16
 −1.13
 39072
 0.241,2,3
 19085
 −1.95
 17222

17
 −0.41
 39735
 −1.40
 17901

18
 0.92
 41556
 −1.19
 18333

19
 −0.93
 18765

20
 0.73
 20802
aμm.
Appendix B. Monotonic cubic spline

Themonotone cubic spline algorithmwas adapted from Fritsch and
Carlson (1980). We assume the measured doubly monotonic δ18Ocarb
versus distance data runs through one complete annual growth cycle
with shutdown (zero growth rate) at both ends. Let a distance (x)
versus time (t) set consist of n points (tk, xk) for k=1,…, n. The steps
leading to a monotone spline are as follows:

1. Define Δk=(xk+1−xk)/(tk+1− tk) for k=1,…,n−1.
2. Initialize mk=(Δk−1+Δk)/2 for k=2,…, n−1 and m1=mn=0.
3. If Δk=0 then set mk+1=0, for k=1,…, n−1.

4. If
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k + m2
k + 1

q
N 3Δk then set:

mk = 3Δkmk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k + m2
k + 1

q

mk + 1 = 3Δkmk + 1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k + m2
k + 1

q
;

for k=1,…, n−1.
5. The cubic spline consists of pieces such that for tk≤ t≤ tk+1, x =

xkh00 zð Þ+xk+1h01 zð Þ+hmkh10 zð Þ+hmk+1h11 zð Þ;where h= tk+1−
tk, z=(t− tk)/h, and the cubic Hermite basis functions are:

h00 zð Þ = 2z3 − 3z2 + 1
h01 zð Þ = − 2z3 + 3z2

h10 zð Þ = z3 − 2z2 + z
h11 zð Þ = z3 − z2:
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