19th Annual Denison Spring Programming Contest
23 February 2008

Rules:

1. All questions require you to read the test data from standard input and write results to standard
output. You cannot use files for input or output. Additional input and output specifications can
be found in the General Information Sheet.

2. All programs will be re-compiled prior to testing with the judges’ data.

3. Non-standard libraries cannot be used in your solutions. The Standard Template Library (STL)
and C++ string libraries are allowed.

4. Programming style is not considered in this contest. You are free to code in whatever style you
prefer. Documentation is not required.

5. All communication with the judges will be handled by the PC? environment.
6. The allowed programming languages are C, C+-+ and Java.

7. Judges’ decisions are to be considered final.

8. There are six questions to be completed in four hours.

9. Important: No extraneous whitespace should appear in your output. Specifically, there should
be no blank lines, unless specifically called for. A line should never end with whitespace. Do not
use tabs in your output, only spaces. Data fields in an output line should be separated by a single
whitespace, unless specified otherwise. Any deviations to these guidelines will result in a “Format
Error” from the judges.

2008 Denison Spring Programming Contest 1

Problem A: Teetering Towers

Towers of varying heights are arranged in a long row. You may dynamite one so that it falls either right
or left. Like dominoes, if the falling tower hits another one, it will cause it to fall over, too. (But if
the top of a tower just touches the bottom of another tower, that tower stays standing.) You have just
enough dynamite to cause one tower to fall either right or left. You wish to knock over as many towers
as possible.

Input

There will be multiple problem sets. Each set will start with a line containing a single positive integer
n indicating the number of towers. The next line will contain n pairs of integers. Each pair, z h, will
indicate the position = of a tower of height h. (z > 0, h > 0 and all numbers will be no larger than
100.) You must find the tower to initially knock over (and in what direction) so as to knock over as
many towers as possible. Input will terminate with a 0 on a line.

Output
For each input set, output a line of the form:
Case k can have m towers fall.

where k indicates the number of the input set (starting at 1) and m is the maximum number of towers
that can be knocked over.

Sample Input

6
023242517481
3

138261

0

Sample Output

Case 1 can have 4 towers fall.
Case 2 can have 1 towers fall.

2008 Denison Spring Programming Contest 2

Problem B: Relay Team

You are the coach of a youth swimming club. One of the big events is the 100 yard medley relay which
has four 25 yard legs, each with a different stroke — backstroke, butterfly, breaststroke, and freestyle
(in that order) — each leg by a different swimmer. In order to encourage learning all the strokes, you
allow no one to swim the medley relay who cannot swim all four strokes under a minute each. League
championships are coming up and you’re putting together your best team. It’s not just a matter of
picking the swimmer with the best time in each stroke because your strongest swimmers typically are
strong in more than one stroke. You decide to write a program to pick the best relay team.

Soon you realize that there may be more than one arrangement of swimmers that get you the best total
time. Now you’ve numbered each swimmer 1, 2, 3, etc. in the order they appear in the file. Each line
in the file will contain one swimmer’s times in the backstroke, butterfly, breaststroke, and freestyle (in
that order), in seconds. To break ties between teams with the best total time, you’ll take the team with
the lowest numbered backstroke swimmer . If still a tie, then lowest numbered butterflyer. If still a tie,
then lowest numbered breaststroker. Finally, if still a tie, then lowest numbered freestyler.

For example, consider the following listing of times:

35 28 30 30
49 25 37 38
39 28 30 30
37 29 33 35
32 30 35 40

The best team would be swimmers 5, 2, 1, 3 swimming the backstroke, butterfly, breaststroke, and
freestyle, respectively, for a total time of 1:57.

Input

Input for each test case will start with n (4 < n < 100) indicating the number of swimmers’ data to
follow. The data for each swimmer follow, one swimmer per line, as integers k b t f, giving the time (in
seconds) for their backstroke, butterfly, breaststroke, and freestyle, respectively. All times will be less
than 60. The first swimmer is swimmer number 1, followed by swimmer number 2, etc. n = 0 indicates
end of input.

Output
For each test case output one line of the form:
Team k’s best relay team is swimmers a b ¢ d for a total time of m:ss.

where k is the test case (starting at 1), a b ¢ d are the swimmers’ numbers swimming the backstroke,
butterfly, breaststroke, and freestyle, respectively, and m:ss is the total time in minutes and seconds of
this team.

(next page)

2008 Denison Spring Programming Contest

Sample Input

5

35 28 30 30
49 25 37 38
39 28 30 30
37 29 33 35
32 30 35 40
6

30 30 30 30
30 30 30 30
30 30 30 30
30 30 30 30
30 30 30 29
29 30 30 30
0

Sample Output

Team 1’s best relay team is swimmers 5 2 1 3 for a total time of 1:57.
Team 2’s best relay team is swimmers 6 1 2 5 for a total time of 1:58.

2008 Denison Spring Programming Contest 4

Problem C: Mirrored Palindromes

As you know, a palindrome is a string of characters that is the same both forwards and backwards,
like the word MADAM. There is another form of palindrome call a mirrored palindrome. Some characters
are mirrors of themselves (such as A or M) and some characters are mirror images of other characters
(such as E and 3 — you sometimes have to stretch your imagination a bit). An example of a mirrored
palindrome is AETUI3A. MADAM is not a mirrored palindrome. We’ll restrict our characters to A-Z and
1-9. (Note zero is not included, being too close to 0.)

Here’s a list of all pairs of mirrored characters: E«»3, J<—L, S«<2, Z+5.

The ‘self-mirrored’ characters are: A, H, I, M, 0, T, U, V, W, X, Y, 1, 8.
The characters without mirrors are: B, ¢, D, F, G, K, N, P, Q, R, 4, 6, 7, 9.
Input

Each input set will consist of a string of length no longer than 50 characters from the characters A-Z,
1-9. The last line, which should not be processed, will be the word END.

Output

For each input string, output a line that is either NO or YES according to if the string is a mirrored
palindrome.

Sample Input

TOTEM
MADAM
AEIUI3A
MOTOM
END

Sample Output

NO
NO
YES
YES

2008 Denison Spring Programming Contest 5

Problem D: Tetris

At least once in your life, you’ve probably played Tetris. Here, we’ll be interested in a simplified version
where the shapes that are dropped into the box can not be re-oriented. There will be 7 different shapes,
labeled A through G as indicated below.

] | |] E
| O | [TTT]
A B C D E F G

Our game will be played on a ‘board’ that is eight squares wide. A shape is dropped in a certain position
and falls until it ‘bumps up against’ a previous piece, or hits the bottom. You’ll be given a series of
drops and asked to show the resulting board. Recall that in Tetris, if an entire row of squares is filled,
the row ‘disappears’ and the rows above this eliminated row all drop down one row. For example, the
diagram below indicates this process, where an X indicates a filled square.

XX |X

XXX XXX X|X — XX |X
XXX XX XXX XX
X X[XX XX X X[XX XX

Note that when a row disappears the rows above drop, not the individual squares. Thus there may be
‘floating’ squares, as we see in the example.

Input

There will be multiple test cases. Each test case will begin with an integer n (n < 100) on a line
indicating the number of pieces to drop onto the board, (n = 0 indicates end of input.) The next line(s)
will consist of n pairs, s ¢, separated by a single space, indicating that shape s will drop with its left-most
square in column c. The columns are numbered 0...7, left-to-right, and s € {A, B,C, D, E,F,G}, as
given above. No shape will be illegally dropped ‘outside’ the board. (For example, G 5 would be an
illegal drop.) Furthermore, assume that at no time during the game will the pieces stack up higher than
10 rows.

Output

For each input set you will output a line indicating how many rows have squares filled and then print out
the board. The format of the first line should match the example in the sample output. There should
be no empty lines between output of test cases. The board should be printed as rows of X (indicating
a filled square) and . (indicating an empty square). The top non-empty row is printed first. The first
sample test case shows the board given above.

(next page)

2008 Denison Spring Programming Contest

Sample Input

6

B2AOAOE2A5G4

2

G4GO

8
FOF1F2F3F4Fb5F6FT
3

DOB1D2

0

Sample Output

Case 1 results in 3 rows.
XX.X....
XXX. .XX.
XXXX.XX.
Case 2 results in O rows.
Case 3 results in O rows.
Case 4 results in 5 rows.
XX

2008 Denison Spring Programming Contest 7

Problem E: Ski Slope

Bill and Peg own a little mom and pop ski slope. Their little mountain has only one lift but a few
slopes. The visiting skier has limited options, but Bill and Peg want to advertise the number of different
runs down the mountain that are possible — even though many runs overlap a bit.

Below we’ve shown Bill and Peg’s slope. The base of the lift is labeled 0 and the top 1. The other
curves are the various paths down the mountain. Curves between dots are called legs and a run is
a path from the top to the bottom (which consists of one or more legs). The dots indicate junctions
where the various legs of the runs meet and you then have a choice of the next leg you might take, thus
giving you different runs. In the example below, there are 14 different runs from the top to the base,
depending on which combination of legs you take.

1

0

Bear in mind that gravity being what it is, you can only ski in one direction (downhill, of course)
between adjacent junctions. In this problem, you’ll be given the layout of a ski slope serviced by a
single lift and asked to figure out how many runs there are

Input

Input for each test case starts with a line of the form n [indicating there are n junctions (in addition
to the base and top) and [legs. (I = 0 indicates end of input and [< 30.) These junctions will be
numbered 2,3,...,n+1 (if n > 0) with 0 indicating the base and 1 indicating the top. On the following
line there follows [pairs, a b, indicating a leg for a down to b. All junctions will be connected to at
least one other junction. The data will be consistent (no loops up the mountain) and every leg will be
on at least one run.

Output
Each test case should output a line of the form
Slope m has r runs.

where you determine the value for » and m is the number of the test case (starting at 1.)

(next page)

2008 Denison Spring Programming Contest

Sample Input

3 10
121213232424404030360
3 10
121212244023402330360
00

Sample Output

Slope 1 has 14 runs.
Slope 2 has 18 runs.

2008 Denison Spring Programming Contest 9

Problem F: Rubic’s Cube — alpha version

While everyone knows Rubic’s Cube, few people know that it went through a number of refinements
until it reached it’s final form. We’ll be looking at the first, or alpha, version. In the alpha version, the
cube consisted of only 8 blocks arranged in a 2 x 2 x 2 array. For reference purposes, we’ll number the
blocks as in the middle picture below and call this the standard position. Beyond fewer blocks in the
cube, each block was a solid color, either red, green, blue, white, yellow or orange. (We’ll denote the
colors by their single lower-case first letter.) So, the individual faces of a given block were not colored
separately — that refinement came later.

As in the final version, all planes of blocks could be rotated in either direction. We’ll denote these planes
as top, bottom, right, left, front and back. (Denoted T, B, R, L, F and K.) each plane can be rotated
either clockwise (c) or counter-clockwise (t) relative to looking at the face in question. For example a
move that moves the left face counter-clockwise (L t) would result in the standard positioned cube to
be oriented as in the left cube below. And the move F ¢ would result in the standard positioned cube
being as in the right cube below.

As you’ve probably guessed by now, you’ll be given the initial coloring of a cube and a series of moves
and asked to produce the end colorings.

3 2 1 2 1 2
7 4 2 3 4 2 7 3 2
4 4 3
7 4 - 3 4 - 7 3
6 6 6
8 8 4
5 8 7 8 8 4
move L t standard position move F ¢

Input

Each test case will start with a line containing the the integer n (< 20) indicating the number of moves
followed by a string of length eight indicating the colors of the blocks, in order of their initial position.
(A value of n = 0 indicates end of input, in which case there will be no colors following on the line.)
The following line(s) will contain n pairs, x y, indicating that face x will be moved in direction y.

Output
Each test case should produce a single output line of the form:
Cube m has coloring cjcacscacscscrcy .

where ¢; is the color of the block that sits in standard position ¢ after all n of the moves have been made
and m is the test case number.

(next page)

2008 Denison Spring Programming Contest

Sample Input

5 rwbgoyrg
FcBcRtRtKECc
3 rrruyyyb
LcTcKt

0

Sample Output

Cube 1 has coloring gbrgryow.
Cube 2 has coloring yrwryyrb.

10

