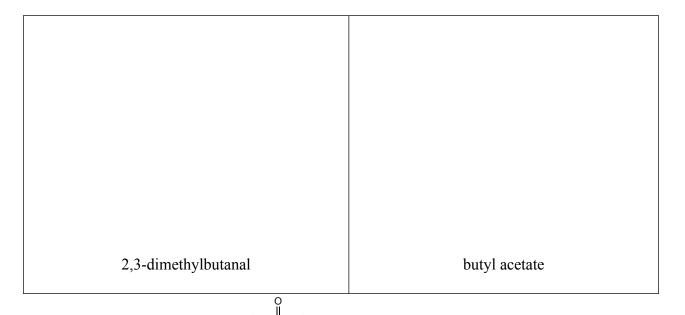
Name	Slayter Box	
Examination III		November 29, 2012

Intermediate Organic Chemistry (CHEM 251-03) Dr. Fantini

Please do not open until instructed

Organic Chemistry II (CHEM 251-02) Dr. Fantini


Examination III November 29, 2012

Notes:

- This exam consists of **9 questions**. Please check to make sure that you have a complete copy of the exam.
- Please do not simply give me answers. Give me well-supported answers. Answers that are not backed by explanations will receive minimal credit.
- Please write clearly; if I can't read your answer, I can't give you credit for your answer.
- Please note that different questions are worth different numbers of points. Plan your time accordingly.
- Remember to include units and significant figures where appropriate.
- No books or notes are to be used on this exam.
- Please do NOT share calculators; if you need a calculator but do not have one, please let me know!
- If you feel that you would be better able to answer **any** question if you had additional information, please do not hesitate to ask for it. I will happily provide any information that I feel will help you answer the question without compromising the efficacy and fairness of the test.

Question	Possible	Score
1	6	
2	10	
3	40	
4	20	
5	0	
6	24	
7	0	
8	0	
9	0	
TOTAL	100	
	Approx. Letter:	

61. Nomenclature. Please give name for structure or structure for name.

102. When you treat ethylphenylketone () with excess chlorine (Cl₂), a different product is obtained when acid is present than when base is present.

(a) Clearly state what the product of the reaction will be in each case.

(b) <u>WHY</u> do the two reactions give different products? Please give a detailed *explanation* rather than a restatement of the facts.

Fill in any of the missing starting material(s), reagent(s), and/or dominant *organic* product(s) for each single reaction. Please specifically denote all stereochemistry.

each single reaction. Please specifically denote all stereochemistry.
$\begin{array}{c} + \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
NaCN/HCI CN
O NaBH ₄ in CH ₃ OH
Ph ₃ P + heat
1. DIBAL-H, -78 °C, toluene 2. H ₂ O/H ₃ O ⁺

Question 3 continued.
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$
OH H ₂ CrO ₄
O + EtOH H ₃ O ⁺
2 O 1. EtOH, NaOEt 2. H ₃ O ⁺
H_3O^+ H_3O^+

Question 3 continued.	
?	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$Ag_2O, NH_3 \longrightarrow O$ OH	
PCC CH ₂ Cl ₂ OH PCC = pyridinium chlorochromate	
O O NaOH, H ₂ O	

Question 3 continued.	
?	
1. LiNHiPr ₂ ("LDA") 2. 1-bromopropane	
NaOH, heat	
1. (CH ₃ CH ₂) ₂ CuLi 2. H ₂ O/H ₃ O ⁺	
OH Br ₂ , PBr ₃	

- 204. Short syntheses.
- (a) Propose a synthesis of this compound from *cyclohexanone*.

(b) Propose a synthesis of this compound from *cyclohexanone*.

(c) Synthesize this compound by the *malonic ester synthesis*.

(d) Use a *protecting-group strategy* to accomplish this synthesis:

245. Please draw a stepwise electron pushing mechanism for the reactions shown below.

Problem 5, continued.