Name _____ Examination I Slayter Box _____

February 11, 2013

Organic Structure and Reactivity (CHEM 132-01)

Dr. Fantini

You may CAREFULLY detach the last page of the exam (solubility rules and periodic table)

Please do not open until instructed

ALLOWED at exam: Pens, pencils, erasers. Calculator

NOT ALLOWED at exam: Cellular telephones and PDA's

Organic Structure and Reactivity (CHEM 132-01)

Dr. Fantini

Examination I

Instructions:

1) This exam consists of 7 problems.

2) Work that is not clear and legible will not be graded

3) Method and / or reasoning must be shown. No credit will be given for an answer alone.

4) Give units for all answers and use significant figures.

5) No books or notes are to be used.

6) Do not share calculators

Question	Possible	Score				
1	10					
2	6					
3	7					
4	22					
5	25					
6	17					
7	13					
TOTAL	100					

February 11, 2013

Chem 132–Spring 2013

page 2

101. Write the equilibrium constant expressions for each of these reactions:

(a)
$$Ba_3(PO_4)_2(s) \rightleftharpoons 3 Ba^{2+}(aq) + 2 PO_4^{3-}(aq) \qquad K_{eq} =$$

(b)
$$\operatorname{Ni}(s) + 4 \operatorname{CO}(g) \rightleftharpoons \operatorname{Ni}(\operatorname{CO})_4(l)$$
 $K_{eq} =$

- $_{6}2$. Give the name or formula to go with the formula or name shown.
- (a) ClO₄- (b) hydroxide (c) sulfate

73. Balance these equations with the smallest integers possible.

(a)
$$\operatorname{NH}_3(g) + \operatorname{O}_2(g) \rightleftharpoons \operatorname{N}_2O(g) + \operatorname{H}_2O(l)$$

(b)
$$N_2O_5(g) \rightleftharpoons NO_2(g) + O_2(g)$$

Chem 132–Spring 2013

page 3

224. For the following reaction, a person used 35 g Al(s) and 122 g $Fe_2O_3(s)$.

$$\begin{array}{rcl} 2 \operatorname{Al}(s) &+ & \operatorname{Fe_2O_3}(s) &\rightarrow & 2 \operatorname{Fe}(l) &+ & \operatorname{Al_2O_3}(s) \\ & & & 160 \ g/mol & & 55.8 \ g/mol & & 102 \ g/mol \end{array}$$

(a) Which is the limiting reagent, Al(s) or $Fe_2O_3(s)$?

(b) What is the theoretical yield of Fe(*l*)?

*** Remember, show work for maximum partial credit potential ***

255. A student mixed 0.50 L of 0.080 M Pb(NO₃)₂ solution with just enough solid to make all the Pb²⁺ precipitate as PbSO₄(*s*). How many grams of Na₂SO₄ did she use?

 $\frac{\text{Pb}(\text{NO}_3)_2(aq)}{331 \text{ g/mol}} + \frac{\text{Na}_2\text{SO}_4(aq)}{142 \text{ g/mol}} \rightarrow \frac{2 \text{ Na}\text{NO}_3(aq)}{85.0 \text{ g/mol}} + \frac{\text{Pb}\text{SO}_4(s)}{303 \text{ g/mol}}$

Chem 132–Spring 2013

176. Write the oxidation number for each element on the reactant and product side of this chemical equation. (Phase labels are omitted for clarity.)

$$2 \text{ NH}_3 + 2 \text{ KMnO}_4 \rightarrow 2 \text{ KOH} + 2 \text{ MnO}_2 + 2 \text{ H}_2\text{O} + \text{N}_2$$

reactant side	product side
N	K
Н	O in KOH
K	H in KOH
Mn	Mn
Ο	O in MnO ₂
	H in H ₂ O
What <i>element</i> was oxidized?	— H in H ₂ O
What <i>element</i> was reduced?	_ N
What <i>compound</i> was the oxidizing agent?	

What *compound* was the reducing agent? _____

137. Determine what precipitate is formed when solutions of cobalt(II) nitrate, Co(NO₃)₂, and potassium phosphate (K₃PO₄) are mixed, and then write the balanced net ionic reaction, being sure to include phase labels.

McQuarrie's Solubility Rules

apply in this order

- 1. Most alkali metal salts and ammonium salts are soluble.
- 2. Most nitrates, acetates, and perchlorates are soluble.
- 3. Most silver, lead, and mercury(I) salts are insoluble.
- 4. Most chlorides, bromides, and iodides are soluble.
- 5. Most carbonates, chromates, sulfides, oxides, phosphates, and hydroxides are insoluble, except for hydroxides of Ba²⁺, Ca²⁺, and Sr²⁺, which are slightly soluble.
- 6. Most sulfates are soluble, except for calcium sulfate and barium sulfate, which are insoluble.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 ப																	2 Ha
1.008																	4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	Ν	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	s	Cl	Ar
22.99	24.31		-	-	-	-	-	-	-			26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub						
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

Periodic Table of the Elements

Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)