Several reaction mixtures containing only N₂O₄ and NO₂ were allowed to come to equilibrium at 25 °C. The equilibrium concentrations of the species in each experiment are as follows:

Exp #	$[N_2O_4]_{eq}\left(M\right)$	$[NO_2]_{eq}(M)$
1	0.5307	0.0495
2	1.114	0.0717
3	0.7456	0.0587
4	0.679	0.056

What is the equilibrium constant for the following reaction? Show that the same value for K_{eq} is obtained from each of the experiments.

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

*** Check with Dr. Fantini that you have the right value for question 1 before continuing. ***

2. What is the equilibrium constant for the following equation at 25 °C?

 $2 \operatorname{NO}_2(g) \rightleftharpoons \operatorname{N}_2\operatorname{O}_4(g)$

3. What is the equilibrium constant for the following equation at 25 °C? $NO_2(g) \rightleftharpoons \frac{1}{2} N_2O_4(g)$

4. For a mixture of N₂O₄ and NO₂ that is known to be at equilibrium at 25 °C, only the [NO₂] was measured. What is [N₂O₄] at equilibrium if the [NO₂] = 0.0098 M?