1. Several reaction mixtures containing only N₂O₄ and NO₂ were allowed to come to equilibrium at 25 °C. The equilibrium concentrations of the species in each experiment are as follows:

Exp#	$[N_2O_4]_{eq}(M)$	$[NO_2]_{eq}(M)$
1	0.5307	0.0495
2	1.114	0.0717
3	0.7456	0.0587
4	0.679	0.056

What is the equilibrium constant for the following reaction? Show that the same value for K_{eq} is obtained from each of the experiments.

For this reaction,
$$= \frac{[N_2O_4(g)]}{[N_2O_4]}$$

$$exp 1$$
 $Keq = \frac{(0.0495)^2}{0.5307} = 0.00462$

$$\frac{\exp 2}{\ker e_g} = \frac{(0.0717)^2}{(1.114)} = 0.00461$$

$$\frac{e_{xp3}}{K_{eq}} = \frac{(0.0587)^2}{0.7456} = 0.00462$$

$$\frac{exp^{4}}{Keq} = \frac{(0.056)^{2}}{0.679} = 0.00462$$

The value of the equilibrium constant doesn't depend on the specific concentrations but the equation will always be satisfied.

Use 0.00462 for the problems on the next page

*** Check with Dr. Fantini that you have the right value for question 1 before continuing. ***

What is the equilibrium constant for the following equation at 25 °C?

$$2 \text{ NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g)$$

This reaction is the same reaction, but reversed.

because
$$K_{eq,2} = \frac{1}{K_{eq,1}}$$

What is the equilibrium constant for the following equation at 25 °C?

$$NO_2(g) \rightleftharpoons 1/2 N_2O_4(g)$$

Keq, 3 = [N204] /2 Note the equation is like the the one above, except all the coefficients have been divided through by 2.

note
$$K_{eq,3} = (K_{eq,2})^{1/2} = \left(\frac{[N_2 \circ_4]}{[N_{02}]^2}\right)^{1/2}$$
 so $K_{eq,3} = \sqrt{216.5}$

For a mixture of N₂O₄ and NO₂ that is known to be at equilibrium at 25 °C, only the [NO₂] was measured. What is $[N_2O_4]$ at equilibrium if the $[NO_2] = 0.0098$ M?

you can do this building off any of the guestions above. Using the expressions from question 1:

$$K_{eq} = 0.00462 = \frac{(0.0098)^2}{[N_2O_4]_{eq}} = \frac{(0.0098)^2}{[N_2O_4]_{eq}} = \frac{0.00462}{[N_2O_4]_{eq}}$$

[N204] = 0.021M