
The Performance Characteristics of MapReduce
Applications on Scalable Clusters

Kenneth Wottrich
Denison University

Granville, OH 43023
wottri_k1@denison.edu

Advisor: Dr. Thomas Bressoud
Denison University

Granville, OH 43023
bressoud@denison.edu

ABSTRACT
Many cluster owners and operators have begun
to consider MapReduce as a viable processing
paradigm for its ability to address immense quanti-
ties of data. However, the performance character-
istics of MapReduce applications on large clusters
are generally unknown.

The purpose of our research is to the characterize
and model the performance of MapReduce appli-
cations on typical, scalable clusters based on fun-
damental application data and processing metrics.

We identified five fundamental characteristics
which define the performance of MapReduce ap-
plications. We then created five separate bench-
mark tests, each designed to isolate and test a sin-
gle characteristic. The results of these benchmarks
are helpful in constructing a model for MapReduce
applications.

1. INTRODUCTION
In the information age of today, there is a growing
disparity between the amount of data being gen-
erated and the ability to process and analyze this
data. However, as the size of data sets grow ever
larger, it becomes more difficult both to store such
quantities of data, and to provide processing ability
on a large enough scale to make use of them.

Already, there are systems in place that attempt
to house and process enormous quantities of data,
on the scale of petabytes and exabytes, by utiliz-
ing clusters of computers in order to parallelize
both processing and storage. Yet, the expansion
of data may outpace the growth of clusters due
to limitations in the ability of such clusters to
scale. In order to address these potential issues, in
2004 Google published a paper describing a parallel

MCURCSM 2011

processing paradigm and associated runtime called
MapReduce[2]. In MapReduce, the input data is
partitioned among independently-operating units
of computation across a parallel system of CPUs.
However, the aggregate performance of a MapRe-
duce application does not necessarily scale linearly
as we increase the size of the input data set. What
is lacking is an understanding of the factors that
affect MapReduce application performance.

Our objective was to characterize the performance
of MapReduce applications on typical, scalable clus-
ters based on fundamental application characteris-
tics, with the ultimate goal of constructing a useful
model of these applications. The model could then
be used in quantifying performance as the appli-
cation scales, and ultimately to model the perfor-
mance in the presence of hardware and software
failures. This paper describes a tractable model of
MapReduce application performance and the ini-
tial steps of benchmarking the key factors affecting
that performance.

2. BACKGROUND
After Google released MapReduce, the Apache
Software Foundation announced Hadoop[1], which
is set of projects featuring an open-source imple-
mentation of the MapReduce cluster-computing
model. The primary Hadoop distribution is com-
prised of two components. The first is the Hadoop
Distributed File System (or HDFS), which is a
framework that allows non-identical storage hard-
ware across multiple computers to act as a single,
unified file system for storing data larger than the
capacity of any individual system[3]. The second
component is the MapReduce application frame-
work, which runs applications that are broken into
two distinct types of phases: a Map Phase, and
a Reduce Phase. These phases are explained in
greater detail below.



Figure 1: Hadoop network structure

Hadoop separates a small set of nodes to act as
Master Nodes, while the majority of nodes are
classified as Worker Nodes (see Figure 1 ). It
is the responsibility of the Master Node(s) to
run a NameNode, which is the controller for the
HDFS, and a JobTracker, which handles the Map
Tasks and Reduce Tasks involved in MapReduce
applications. These tasks, which encompass the
actual computation of the application, are assigned
to Worker Nodes. Worker Nodes run a Task-
Tracker, which accepts tasks from the JobTracker
on a Master Node, in addition to a DataNode,
which controls the storage of data on the Worker
Node’s local hardware.

Hadoop’s application framework and distributed
filesystem function in tandem to implement
Google’s MapReduce paradigm. However, Hadoop
is not affiliated with Google. The diagrams and
terminology used in this paper describe Hadoop’s
implementation of MapReduce. Google’s imple-
mentation of the application framework and dis-
tributed filesystem may perform differently. We
are unable to test Google’s software, as it is not
freely available.

2.1 Hadoop Example Application
In order to further explain the way in which
Hadoop functions, we have included a detailed de-
scription of a basic MapReduce application. All
MapReduce applications have the requisite prop-
erty that, given a partitioning of the input data
set, the correct solution can be obtained by inde-
pendent tasks processing their share of the input
and then combining the results. The example ap-
plication, WordCount, takes in a textual corpus
volume, and outputs the number of occurrences of
each unique word in the volume.

The first step, before the application is even run, is
to store the input data for the application on the
HDFS. The NameNode running on the Master
Node(s) splits the data into 64-megabyte blocks,
and send each block across the network to three

Figure 2: The stages of a MapReduce appli-
cation

separate DataNodes[3]. Upon receiving a block
from the NameNode, a DataNode saves it to local
storage on the node. By having each block saved
in three locations, the NameNode helps to resist
data loss due to failure or corruption at the cost
of effective storage capacity. Additionally, having
each block of data in multiple locations allows a
block to be read from the DataNode that is the
least occupied at any given time, increasing HDFS
performance.

Once the input data is contained in the HDFS, the
JobTracker on the Master Node can begin the
MapReduce application. The first phase of any
application is the Map Phase. The JobTracker di-
vides the input data into a set of partitions, and
creates an equal number of Map Tasks. Then, the
Map Tasks are instantiated by the TaskTrackers
on the Worker Nodes (see the first diagram in
Figure 2 ). In the WordCount application, each
partition of data is a number of lines from the in-
put data, and each Map Task parses the text and
maintains a count for the number of occurrences of
each unique word in its partition. Upon completing
the parsing, the Map Task emits key/value pairs of
the form word/sum, where word is a word from the
input data and sum is the number of times that it
was encountered. The Map Phase ends when all
individual Map Task have completed.

Between the Map Phase and the Reduce Phase, the
output of the Map Tasks is shuffled and sorted (see
the second diagram in Figure 2 ). In WordCount,
every unique word in the input text is a key value.



A single Reduce Task is responsible for finding the
total associated with a given key value. During the
shuffle, the values for a specific key are collected
from every map task that emitted a pair with that
key. The intermediate data is then sorted by key
value for use in the next phase.

The final stage of computation is the Reduce
Phase. The JobTracker creates a number of Re-
duce Tasks equal to the number of unique keys in
the intermediate data. The tasks are again instan-
tiated by the TaskTrackers in the cluster, which
then process the intermediate data corresponding
to their key. In WordCount, a Reduce Task is
given a word as its key value, and it computes the
sum of all occurrences by summing the values of
each key/value pair corresponding to its key. Upon
completion, the Reduce Tasks report back to the
JobTracker (see the third diagram in Figure 2 ).
The output data is then written back to the HDFS
in the same way that the input data was—that is,
it is broken into blocks and written to the storage
housed in various Worker Nodes. The output
of WordCount is a number of key/value pairs of
the form word/sum, where word is a unique word
from the input text and sum is the total number of
instances in which it occurs in the text. Depend-
ing on the number of unique words in the original
corpus, the output itself may be large.

In the following section, we describe the steps that
we took to analyze the performance characteristics
of MapReduce applications.

3. METHODS
There are multiple factors that affect the perfor-
mance of MapReduce applications on a cluster. In
order to address this, our first task was to con-
struct a model in which we isolated five specific
factors that affect MapReduce application perfor-
mance. These factors are focused on quantities of
input and output data. While application perfor-
mance is also heavily influenced by the amount of
processing time required to complete the task, we
did not address this factor because we assumed
that application performance would scale linearly
with the availability of processing capability.

The first factor is the volume of input data to the
application. The input data is partitioned among
the map tasks, and the key performance metric is
the bandwidth of the end-to-end pipe between the
HDFS and the set of map tasks across the network.

The second factor is the volume of intermediate
data, which is emitted by the map tasks at the end
of the Map Phase. This intermediate data must be
shuffled across the cluster and sorted by key value.
Here, the performance is determined by both the
bandwidth and the efficiency of the sort.

Third is the volume of output data, which is emit-
ted by the Reduce Tasks at the completion of the
Reduce Phase. The NameNode on the Master
Node is notified of the data to be written to the
HDFS, and it instructs the DataNodes in the clus-
ter where each block of the output should be writ-
ten. The performance metric during this process
is the bandwidth available to send the output data
to each DataNode, in addition to the write speed
of each DataNode’s storage devices.

Beyond the data volumes, there are two other
fundamental characteristics affecting the perfor-
mance of a MapReduce application. The first is
the number of Map Tasks among the available
concurrently-executing cores in the cluster. The
second is the number of Reduce Tasks.

Any MapReduce application may be characterized
by quantifying these five factors. In order to eval-
uate the influence of the factors on the overall per-
formance of a MapReduce application, we isolated
these factors individually in each of our five sets of
microbenchmarks.

In order to run our benchmarks, we designed and
constructed two independent computing clusters to
perform our testing. The first cluster, which we
will refer to as Cluster 1, served as the primary
testing cluster. It consists of a single computer
performing the functions of a Master Node, in-
dicated on the left in Figure 1, as well as 16 com-
puters as Worker Nodes. The Worker Nodes
execute both TaskTrackers and DataNodes, while
the Master Node provides the NameNode and
JobTracker for the cluster. Each of the 17 nodes is
equipped with a quad-core Intel Core 2 processor
running at 2.66 GHz. Each machine also has 4 GB
of RAM and a 160 GB hard drive. The machines
are connected by a 100 megabit network switch.

Cluster 2 is very similar to Cluster 1, but with
some slight differences. It is also comprised of 16
Worker Nodes and a single Master Node. In
contrast to Cluster 1, each of the 17 identical
machines contains a quad-core Intel Core i7 pro-
cessor running at 3.40 GHz, 4 GB of RAM, and a



500 GB hard drive. The computers in Cluster 2
are networked by a 1000 megabit network switch.
Cluster 2 was assembled from machines residing
in a classroom, and our window of opportunity to
perform testing was relatively narrow. As such,
only the latter three sets of benchmarks could be
run on Cluster 2.

Both of our clusters are running Ubuntu Linux ver-
sion 10.10. Each node is configured with Java ver-
sion 1.6.0 21 and Hadoop 0.20.2. The Hadoop Dis-
tributed File System on Cluster 1 has a total ca-
pacity of 2.2 terabytes, and the HDFS on Cluster
2 has a total capacity of 6.9 terabytes.

3.1 Input Data
The first set of benchmark tests focused on the ef-
fect that the quantity of input data had on overall
application performance. For this benchmark, we
ran an application which accepts a text file consist-
ing of single-digit integers, one per line. The appli-
cation creates 512 Map Tasks and 1 Reduce Task.
During the Map Phase, each Map Task records
the number of 3’s it encounters in its partition of
the input, then emits a key/value pair of the form
3/num, such that num is the number of 3’s in the
partition. The Reduce Phase then combines the
input from the Map Phase into a key/value pair of
the form 3/sum, where sum is the number of 3’s
in entire input. This test was run with six sepa-
rate data sets, comprised of 2, 4, 8, 16, 32, and 64
gigabytes of data, respectively.

3.2 Intermediate Data
The second test involved varying the amount of in-
termediate data that is emitted by the Map Tasks
at the conclusion of the Map Phase of a job. For
this benchmark we created an application that ac-
cepts a trivial input, and created 64 Map Tasks
and 3 Reduce Tasks during its execution. The Map
Phase involves each Map Task emitting a certain
number of key/value pairs of the form int/1, such
that int is a pseudo-randomly-generated integer
between 0 and 2. The Reduce Task simply emits a
key/value pair of the form int/sum, where sum is
the total number of integers counted by particular
Reduce Task. We ran applications where the Map
Phase output ranged from 1 to 8 gigabytes, with a
step size of 1 gigabyte.

3.3 Output Data
Next, we tested the effects of the quantity of out-
put data emitted by the Reduce Tasks on overall
job runtime. The application for this test accepts a

trivial input and created 64 Map Tasks and 128 Re-
duce Tasks. Each Map Task emitted two key/value
pairs such that the entire set of intermediate data
was composed of 128 pairs of the form int/1, where
int was a number 0-127. The Reduce Phase gen-
erated text files composed of single-digit integers
pseudo-randomly chosen between 0 and 9, with one
integer per line. We ran applications that created
output files totaling between 8 and 64 gigabytes of
data, with a step size of 8 gigabytes.

3.4 Number of Map Tasks
The fourth test involved varying the number of
Map Tasks that were generated during the Map
Phase. Here, we used a similar application to that
of our Intermediate Data test, except that the to-
tal amount of data emitted by all Map Tasks was
fixed at 64 GB. Then, we varied the number of Map
Tasks that were generated. This benchmark test
was run using applications that generated 64, 128,
256, 512, 768, 1024, 1366, and 2048 Map Tasks.

3.5 Number of Reduce Tasks
Our final test evaluated the performance of an ap-
plication in relation to the number of Reduce Tasks
that were generated during the Reduce Phase. We
modified the application that we used in our Out-
put Data test so that the Map Phase would gen-
erate a specific number of unique key/value pairs
equal to the desired number of Reduce Tasks. The
Reduce Phase would then generate a total of 64
gigabytes of data. The amount of data each Re-
duce Task emitted was set to change dynamically
with the number of Reduce Tasks so that the to-
tal size of the output would remain the same. We
tested applications with between 64 and 3072 Re-
duce Tasks.

4. RESULTS
The results for each of the benchmark tests that
we performed are given here in terms of real-time
seconds from the initiation of a job to its reported
completion.

4.1 Input Data
As one might expect, the time required to run an
application scaled almost exactly linearly with the
amount of input data. There was very little vari-
ance in this data, and it fits the trend line almost
exactly (see Figure 3 ). We saw that, on average,
each gigabyte of input data increased job time by
13.2 seconds.



Figure 3: Input Data results

Figure 4: Intermediate Data results

4.2 Intermediate Data
The results for our tests revolving around the quan-
tity of intermediate data had a high degree of vari-
ance. However, as one can observe in Figure 4, the
resultant data still fits a quadratic curve reason-
ably well (R2 ≥ 0.95).

Here, there are multiple factors playing into the ef-
fect that the quantity of intermediate data has on
total job run time. As data is emitted from Map
Tasks, it is stored locally in a non-HDFS volume on
the Worker Node. Then, the data is sorted by
key value before the Reduce Phase begins. Hadoop
implements a quicksort algorithm to sort the in-
termediate data, which takes O(n log(n)) steps to
complete. As the amount of data to sort increases,
so too does network congestion. As network traf-
fic increases toward the maximum capacity of the
network hardware, performance typically drops ex-
ponentially.

4.3 Output Data
Once we began running tests on both clusters, we
were able to verify that the patterns in our data
were similar in both cases. When we tested the
effects that variation in the quantity of output data
had on total job time, we found that the data fit a
quadratic regression very well (R2 ≥ 0.99 for both).
This regression is visible in Figure 5.

Figure 5: Output Data results

Figure 6: Number of Map Tasks results

In both these benchmarks and those examining the
effects of the volume of input data, performance
is limited by network bandwidth and hard drive
speed. However, the read speed of a hard disk is
significantly faster than the write speed. In the
Input Data test, we hypothesized that network
speed, which is limited at 100 megabits per sec-
ond on Cluster 1, was more limiting than drive
read speed. Then, in the Output Data test, since
the hard drive bottleneck is its write speed rather
than its read speed, it is possible that disk speed
was more limiting than network bandwidth.

4.4 Number of Map Tasks
We observed an increase in job performance as the
number of Map Tasks was increased, but only up to
a certain point, after which performance decreased.
As granularity increased, performance increased as
to the number of Map Tasks increased, illustrating
cluster’s ability to execute Map Tasks in parallel.
However, at around 1024 Map Tasks per applica-
tion, increasing the number of Map Tasks no longer
improved performance. Figure 6 shows that Clus-
ter 2 ran the application faster with 512 Map
Tasks than with 768.

Our expectation for this test was that it would re-
veal a data distribution with a local minimum. We
predicted that after a certain point, the increased



Figure 7: Number of Reduce Tasks results

overhead of creating and distributing Map Tasks
would begin to outweigh the benefits of increased
granularity.

4.5 Number of Reduce Tasks
In testing the effects of the granularity of the Re-
duce Phase on application run time, we saw an
even more defined minimum than in the previous
set of benchmarks. We suspected that a minimum
would appear in the data for the same reasons as
those in the previous testing phase.

We believe that the local minimum in the data,
which occurs at around 640 Reduce Tasks in Clus-
ter 1, and around 896 Tasks in Cluster 2, rep-
resents the optimal granularity of an application
with this specific number of Map Tasks and these
quantities of data (see Figure 7 ). The factors that
affect where this minimum falls are the same as be-
fore: disk performance and network bandwidth. It
is likely that such an optimum for a given applica-
tion exists in every cluster, and its characteristics
are dependent on the hardware of the cluster and
the parameters of the application.

5. CONCLUSIONS
After examining our results of the five benchmark
tests, the following trends were observed.

The amount of input data for a given MapReduce
application had a linear effect on total application
run time, where the required run time for an ap-
plication increased at a rate of 13 seconds per gi-
gabyte of data. In the intermediate data and out-
put data tests, a polynomial trend was observed
between data volume and application run time.
Application run time was improved when increas-
ing either the number of Map Tasks or the num-
ber of Reduce Tasks up until approximately 512
Tasks, beyond which no measurable benefits were
observed. In fact, increasing the number of Reduce

Tasks beyond this threshold had an adverse effect
on application run time. This means that an opti-
mal number of Map Tasks and Reduce Tasks exist
for a given MapReduce application running on a
specific cluster.

6. FUTURE DIRECTIONS
Our research is the first step in creating a model
of the performance of MapReduce applications on
large, scalable clusters. It is possible to take our re-
search further in the future by executing these mi-
crobenchmarks on larger computing clusters. This
would verify our results from Cluster 1 and
Cluster 2 and allow us to examine the perfor-
mance characteristics of these applications on dif-
ferent cluster sizes.

Following further testing, the performance charac-
teristics could be used to create a model which can
simulate the performance of MapReduce Applica-
tions. By combining this model with real hardware
failure data, it would be possible to create a dis-
crete event simulator that emulates actual cluster
performance in the face of such failures. Such a
simulator would allow us to generalize the perfor-
mance characteristics of MapReduce applications
on larger, enterprise-class clusters such as those
that exist in data centers or cloud-computing en-
vironments.

7. ACKNOWLEDGEMENTS
This research was supported by funding from the
Anderson Endowment of Denison University and
the Bowen Endowment of Denison University.

8. REFERENCES
[1] Hadoop. <https://hadoop.apache.org/>,

August 2011.
[2] Jeffrey Dean and Sanjay Ghemawat.

Mapreduce: Simplified data processing on
large clusters. USENIX Symposium on
Operating Systems Design and
Implementation, 2004.

[3] Scott Rixner Jeffrey Shafer and Alan L. Cox.
The hadoop distributed filesystem: Balancing
portability and performance. IEEE
International Symposium on Performance
Analysis of Systems and Software, 2010.

[4] Michael G Noll. Running hadoop on ubuntu
linux (multi-node cluster).
<http://www.michael-
noll.com/tutorials/running-hadoop-on-ubuntu-
linux-multi-node-cluster/>, August
2011.



[5] Michael G Noll. Running hadoop on ubuntu
linux (single-node cluster).
<http://www.michael-
noll.com/tutorials/running-hadoop-on-ubuntu-

linux-single-node-cluster/>, July
2011.

[6] Tom White. Hadoop: the Definitive Guide.
O’Reilly, Sebastopol, CA, 2011.


	Introduction
	Background
	Hadoop Example Application

	Methods
	Input Data
	Intermediate Data
	Output Data
	Number of Map Tasks
	Number of Reduce Tasks

	Results
	Input Data
	Intermediate Data
	Output Data
	Number of Map Tasks
	Number of Reduce Tasks

	Conclusions
	Future Directions
	Acknowledgements
	References

