
Cluster Fault-Tolerance: An Experimental
Evaluation of Checkpointing and MapReduce

through Simulation
Thomas C. Bressoud #1, Michael A. Kozuch ∗2

# Department of Mathematics and Computer Science, Denison University
P.O. Box 810, Granville, Ohio, USA

1 bressoud@denison.edu

∗ Intel Research Pittsburgh, Intel Corporation
4720 Forbes Avenue, Pittsburgh, Pennsylvania, USA

2 michael.a.kozuch@intel.com

Abstract—Traditionally, cluster computing has employed
checkpointing to address fault tolerance. Recently, new models
for parallel applications have grown in popularity—namely
MapReduce and Dryad, with runtime systems providing their
own reexecute-based fault-tolerance mechanisms, but with no
analysis of their failure characteristics. Another development is
the availability of failure data spanning years for systems of
significant size at Los Alamos National Labs (LANL), but the
Time Between Failure (TBF) for these systems is a poor fit to
the exponential distribution assumed by optimization work in
checkpointing, bringing these results into question. The work
in this paper describes a discrete event simulation driven by
the LANL data and by models of parallel checkpointing and
MapReduce tasks. The simulation allows us to then evaluate
and assess the fault tolerance characteristics of these tasks with
the goal of minimizing the expected running time of a parallel
program in a cluster in the presence of faults for both fault
tolerance models.

I. INTRODUCTION

The number and size of parallel applications in cluster-
computing environments continues to grow at a rapid rate.
Areas such as data-rich computing [1] are moving problems
with an overwhelming scale of data such as video-scene
understanding, natural language translation and data mining
applications from rare to everyday, driven by the availability
of vast new datasets. Further, clusters are no longer con-
strained to be built in-house. The advent of cloud computing
[2] enables the creation of virtual clusters in the cloud to
suit the application, enabling both transient and permanent
cluster applications. With larger input datasets and the implied
longer processing times, the number of processing elements,
n, applied to the problems is increasing as well.

Accompanying this growth is an increasing probability of
failure of some of the components involved in the computation.
Fault-tolerance techniques, which allow a computation to make
progress in the presence of individual component failures,
are required. Checkpointing with rollback-recovery [3] is one
fault-tolerance technique that has long been employed [4], [5],
[6], [7], [8] in cluster systems to address this requirement.

In rollback-recovery, a failed process is rerun from an
application state saved earlier to stable storage, with periodic
checkpoints over the application execution used to reduce
the amount of lost computation. Checkpointing with rollback-
recovery may be employed for single processing element
applications (n = 1) as well as for parallel applications.
When n > 1 and the processing elements communicate, such
interaction creates causal dependencies between the processes
which must be handled by the checkpointing scheme, either
through coordinated checkpointing1 or by risking cascading
rollbacks of the processes. If n = 1, or if n > 1 and the
application is embarrassingly parallel, with no causal commu-
nication between processes, then uncoordinated (independent)
checkpointing may be used without risk of cascading rollback.
The parallel programming models in which checkpointing may
be employed include message passing systems (e.g. MPI [9])
as well as custom crafted and independently scheduled sets
of processes. The performance issue in parallel applications
using checkpointing is to determine the interval at which to
initiate checkpoints so that the expected running time of the
application in the presence of failures is minimized.

In efforts to simplify programming for parallel applica-
tions, particularly ones with a clear data decomposition,
new paradigms have been introduced and have grown in
popularity—namely MapReduce [10] and Dryad [11]. These
systems comprise both a programming model and a runtime
system. The runtime system partitions and manages the data
distribution and automatically defines and schedules instances
of the execution elements on processors in the system, man-
aging the data in-from and data out-of the execution elements.
In the model, the programmers job is simplified and centers
around creating one or more sequential program stages, called
tasks, that implement a sequential program on their “slice” of
the data. The output of these tasks can be directed (by the

1Communication-induced checkpointing is an alternative technique that
avoids rollback propagation.



runtime) to other tasks or to the final output. In MapReduce
there are two stages of computation (the map stage and the
reduce stage), while Dryad generalizes this “dataflow” view
of parallel computation to an arbitrary directed acyclic graph
of computation with the data flowing along the edges of the
graph. These new parallel programming paradigms are being
applied to both existent problems and to the data-rich types of
problems mentioned above.

The runtime system in both of these paradigms provides a
model-specific technique for fault tolerance. First, the runtime
must support the detection of the failure of processing nodes.
Because it is also responsible for scheduling, the runtime
knows what tasks have failed as a result of a node failure
and can redistribute and schedule redundant instances of failed
tasks on non-failed nodes. The runtime must also ensure the
data in and out of the restarted tasks are directed appropriately.
The correctness of the technique depends on an underlying
assumption of deterministic execution of the tasks—given
a particular input, instances of the same task will, even if
executed repeatedly, generate the same output. The model
provides the required independence of tasks within a stage
and forces all causal dependencies into the dataflow between
stages.

With the growth in scale of parallel applications, the
fundamental issue of performance is more important than
ever. The performance of fault-tolerant parallel applications
is determined by both (i) the distribution of failures in our
cluster systems and by (ii) the fault tolerance techniques we
employ. Application designers are faced with real choices.
Given their application characteristics, they must decide the
appropriate programming paradigm and the appropriate fault
tolerance technique that minimizes the expected run time of
their application.

Checkpointing has a long history of research on the per-
formance question. Focusing on n = 1 and assuming node
failures are governed by a Poisson process with a failure rate of
λ, a mathematical analysis can derive an approximation to the
optimal checkpoint interval in terms of λ and the checkpoint
overhead [12], [13]. Essentially, this analysis balances the
tradeoff between the overhead of taking checkpoints with the
expected amount of lost work when failures occur. These
theoretical results have been brought into question as a number
of studies of real failure data (primarily from networks of
workstations) [14], [15], [16], [17], [18] have failure distri-
butions that are fit poorly by the exponential distribution that
is a necessary condition of the Poisson process assumption of
the checkpointing work.

As a newer programming paradigm and associated fault
tolerance mechanism, the MapReduce and Dryad systems have
a significant absence of research work on their performance in
the presence of failures. There is no equivalent mathematical
analysis that starts with a failure distribution and derives
expected run time in the presence of failures nor optimization
of the parameters of the system to minimize expected run time
of the parallel applications under execution.

Relative to our objective of understanding the performance

of these varied fault tolerance mechanisms for cluster systems
as we scale n and under real-world failure rates, we can
summarize the deficiencies of prior work:

1) Theoretical work in checkpointing relies on a failure rate
distribution that is not borne out by real failure data.

2) Checkpointing analysis has focused on the n = 1 case
and, when n > 1 checkpointing systems are examined,
the failure rate is assumed to follow λn = n · λ.

3) Studies of failures in real systems have almost exclu-
sively been targeted at networks of workstations, the
important exception being the Schroeder and Gibson
work [18]. One would expect the closely managed and
administered nodes of a cluster would have different
failure characteristics than a heterogeneous network of
workstations.

4) The new programming paradigms and their associ-
ated reexecute-based fault-tolerance mechanism lack
any fault-tolerance based analysis other than the basic
demonstration of their correct operation. Specifically,
there is no analysis of the failure-related performance
of these systems as we scale n.

The real-world data provided by Los Alamos National Labs
(LANL) in 2005 [19] is central to improving the current situ-
ation. This failure data encompasses 22 systems in operation
at LANL from 1996 through 2005, including both NUMA
(Non-Uniform-Memory-Access) and 2- and 4-way SMP node
clusters. These are the systems whose characteristics are
studied in [18].

Our solution approach is to use the real-world failure data
provided by a targeted set of cluster system from the LANL
datasets and to build a discrete event simulation that can
model both checkpoint-based fault-tolerance and the indepen-
dent reexecution fault-tolerance mechanism for MapReduce
style programs. We can then vary the factors that impact the
overhead and performance of these system as they execute
in a simulated cluster and can evaluate the performance of
both mechanisms. Our end objective is to give tools and data
to inform the choice of programming paradigm and fault-
tolerance mechanism by the application designer.

The research work described in this paper fills a vital gap
in understanding the performance of cluster systems in the
presence of failures and as highlighted by the deficiencies
enumerated above. By using the LANL data, we obtain a
realistic failure rate distribution that is applicable to the types
of cluster systems we are interested in and does not suffer from
the mismatch of the distribution assumed by a mathematical
analysis. It also gives us a feasible approach for the new
paradigms, which currently have no mathematical analysis. By
developing models of parallel MapReduce and Checkpointing
applications used in the simulation, we overcome the domi-
nance of the n = 1 analysis of most of the checkpointing work,
and can vary n as we execute scenarios in the simulation. In
addition, we may easily model variations to perform “what-if”
performance analysis on different models.

The remainder of this paper is organized as follows. In
Section II we look at related work that is the conceptual



starting point for the current investigation. Section III presents
an analysis of the failure data for the specific systems un-
der study. We then describe our simulator and its models
of Checkpointing and MapReduce in Section IV. Given an
understanding of the simulator and the source data, we present
a failure rate analysis in Section V. Sections VI and VII
present our results in the simulation of checkpointing and
MapReduce parallel applications. Finally, in Section VIII, we
summarize our results and discuss future directions.

II. RELATED WORK

The availability of node failure data in real systems has long
been an issue. When collected by vendors, the data is held
close and not disseminated. The early notable exception is the
work by Gray [20], [21]. The majority of the work since then
has focused on gathering failure data from a loose distribution
of heterogeneous machines on a network using means such as
probing the set of target machines, recording reboot actions,
and using event logs/problem reports to infer time-to-failure
and time-to-recover [14], [15], [16], [22], [23], [24]2. Several
of these works report the same conclusion that the failure
distribution is poorly fit by an exponential. Unfortunately the
data sets in these studies are typically small and/or the data
collection interval is also small. As noted, these systems may
not be representative of clusters.

More recent work has focused failure analysis on more
tightly coupled systems of nodes for parallel applications.
Work by Sahoo et al. [17] studies a production environment
of nearly 400 heterogeneous server machines whose dominant
workloads were parallel scientific codes using MPI. Data was
collected using log files on the servers over a year and a half
period. Another study by Oliner and Stearly [25] used raw
system logs to explore five supercomputers, all ranked on the
Top500 Supercomputers List as of June 2006 [26]. Logs span
periods from 104 days up to 558 days. Although the datasets
in both these studies match more closely the cluster systems
that we are interested in, the focus of these studies is on simply
understanding the failure rates and causes of events in the logs,
so there is no attempt to use the data in then understanding
performance for any fault tolerance mechanism.

In similar fashion, the studies by Schroeder and Gibson [18],
[27] analyze the 22 LANL high performance systems. The
first of these studies was coincident with the public release of
the LANL failure data in 2006. The study examines failure
root causes and failure correlation along with failure arrival
rates and repair times, and comes to the conclusion that the
failure rates are poorly fit by an exponential distribution.
These authors have continued efforts to make real-world
failure data available (including the LANL data) for use by
other researcers [28]. While these more recent works are
more applicable to cluster systems, they do not take the next
step of applying these realistic failure rates to fault tolerant
mechanisms to evaluate performance.

2Both [15] and [24] use the dataset of [14] for their own analysis in addition
to providing additional data sets.

TABLE I
LANL SYSTEMS IN STUDY

System Nodes Cores Dates Failures
18 1024 4096 May-02 to Aug-05 3997
19 1024 4096 Oct-02 to Aug-05 3284
20 256 1024 Dec-01 to Sep-05 2124

Of the papers examining failure rates, the landmark work by
Plank and Elwasif [15] goes beyond analyzing the distribution
and explores the effects on the performance of the checkpoint
restart-recovery fault tolerance mechanism. In many ways,
this work is the most comparable to ours in that it uses
real failure data and also uses the technique of simulation to
assess performance. Failure data from three data sets drove the
simulation, with all three based on a heterogeneous network
of machines. The bulk of the work focuses on the n = 1 case,
with some effort to ask the question whether the assumption of
λn = n ·λ is valid for the given datasets. Unfortunately, these
data sets were too disparate to answer that question, giving
inconsistent and inconclusive results.

Our own work builds on the these last two works by using
select clusters from the LANL data to obtain quality input data
to our simulation that is representative of the clusters we are
interested in. We focus on the parallel case and, by employing
models for different fault tolerance mechanisms, are able to
evaluate both checkpointing and map-reduce techniques.

III. SOURCE FAILURE DATA

While the failure data included from LANL includes 22
systems, only the three largest clusters of SMPs were selected
as input datasets for the current work. These were Systems 18
(S18), 19 (S19), and 20 (S20)3, and their basic characteristics
are listed in Table I. We use the term node to refer to
an independently bootable machine and core to refer to an
execution core within a node. Within all three of these clusters,
the processor/memory chip model are the same, but individual
nodes can vary in the amount of memory installed.

The LANL failure data, obtained from a Remedy database,
recorded each time interval that a node was down; for each
of the three systems, the failure data was processed into a file
consisting of a set of “up”-intervals, (ti, tj) for each node,
with time measured relative to the first up time in the system’s
dataset. These up-intervals then give an explicit time-between-
failure (TBF) for each node and a time-to-recovery implicit in
the time from the end of one up-interval until the time to the
start of the next up-interval. The relative frequency of the TBF
for the three systems is plotted in Figure 1. While S18 and S19
exhibit very similar distributions, with Mean TBF for each at
251 days and 255 days, S18 has a MTBF of 149.25 days along
with a larger coefficient of variation (1.48 for S20 compared
with 1.07 and 1.03 for S18 and S19).

To assess these empirical distributions against the expo-
nential and other standard distributions, we performed the

3In [18], these are given identifiers 7, 8, and 5, respectively.
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Fig. 1. Relative Frequency of Time Between Failures for LANL Clusters

TABLE II
KOLMOGOROV-SMIRNOV STATISTIC ANALYSIS

Distribution S18 S19 S20
Beta (t) 0.020 0.022 0.038
Weibull (t) 0.070 0.067 0.049
Gamma (t) 0.083 0.078 0.062
Exponential (t) 0.105 0.090 0.242
Lognormal (t) 0.135 0.127 0.117
critical value (v) 0.021 0.023 0.030

Kolmogorov-Smirnov (K-S) goodness of fit test. We started
by parameter fitting five distributions to the empirical data
for the three systems. The distributions chosen included the
exponential, the lognormal, the gamma, the Weibull, and the
beta distributions. We then calculated the K-S statistic, t, for
each of these, as well as the critical value for the K-S statistic
(v) given α = 0.05, and present the results in Table II.

When t < v, we cannot reject the null hypothesis that this
empirical data is from the given distribution. Thus the beta
distribution passes this test for S18 and S19 and is a better fit
than the other distributions for S20.

In Figure 2, we present the Cumulative Distribution Func-
tion (CDF) for the empirical TBF distribution, the exponential
distribution, and the beta distribution for S18 and S20 (the S19
CDFs appear qualitatively identical to S18 and are omitted
here). These graphs visually confirm the K-S analysis indicat-
ing the superior fit of the beta distribution over the exponential
for the failure rate of these cluster systems.

IV. SIMULATOR

The simulator we designed and built for this work, called
CFTsim (Cluster Fault Tolerance simulator), is written in
Python and makes use of the the SimPy (Simulation in Python)
discrete-event simulation package [29] . The package is object-
oriented and process-based and fit our needs for a flexible
system in which we could introduce new models for the
behavior of fault tolerance mechanisms in an easily extensible
framework.

Using a set of up-intervals as input, the simulator takes (i)
one of our datasets (S18, S19, or S20), (ii) a scale parameter,
n, that specifies the number of cores to employ for each
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Fig. 2. Cumulative Distribution of Time Between Failures for S18 and S20

application instance A, and (iii) a set of parameters specific
to a fault tolerance model, and steps through the events of
nodes/cores going up and down and interacting with the
parallel application and fault-tolerance model. The simulator
also has a configuration parameter specifying the number of
cores per node. The goal is to obtain a set of simulated
execution times (Ei) for A over the time interval defined by
the dataset. One execution of CFTsim over the dataset time
interval defines a run.

We define a task instance (or simply task) as a unit of work
of A assigned to a single core. During a run, the scheduler
component of CFTsim is responsible for selecting a random
starting time for A and for randomly selecting a set of n cores
to be used for the tasks of A. This set of cores is fixed and
dedicated for use by this instance of A until its completion.
Note that the size of the set of tasks of A may be > n,
depending on the programming and fault tolerance mechanism
being modeled. Depending on N , the total number of cores in
the cluster, along with n and the start times, multiple instances
of A may be simulated concurrently (although on different
cores) in a given run.

In addition to the scheduler, the simulation of the cluster
involves modeling application instances, the task instances
making up a given application instance, and the cores upon
which the task instances execute. Each of these elements in
CFTsim is implemented as a Python/SimPy process object.
The behavior of the application instances and task instances is
defined by the fault-tolerance model and is described below.
The design of the operation of the cores must be agnostic



TABLE III
CHECKPOINTING MODEL PARAMETERS

Param Description
n Number of cores for an application instance.
F Failure free execution time for a single task instance

(days).
I Checkpoint interval (min.).
C Checkpoint overhead during which no task work is ac-

complished (min.).
L Checkpoint latency – interval of time from start of check-

point until it is committed (min.).
R Recovery time – interval from a core coming back up until

a prior checkpoint is loaded and work may be resumed
(min.).

Coord Boolean indicating if checkpointing is coordinated or
independent.

Work Checkpoint Overlap
Work

Down

Recover

L - C

CI'

Fail
Fail

Fail

Up
R

Fig. 3. Checkpointing Finite State Machine

to the fault-tolerance mechanism and works as follows. A
core is associated with a particular node, and is given the
set of up-intervals specific to that node. A core also has an
incoming task queue, whose elements are task instances. The
task queue is filled, as appropriate, by an application instance.
When available, the core activates at most one task instance
from its queue. Beyond activation and recording task instance
completion, a core simply alternates between UP and DOWN
states, notifying any interested elements (the scheduler and/or
the application instance and/or the task instances themselves)
of these state transitions.

A. Checkpointing Model

The checkpointing model is defined by the parameters given
in Table III. A checkpointing application instance, A, is given
n cores by the scheduler and creates a single task per core.
Each task executes its own finite state machine (FSM) as given
in Figure 3. A task begins in the Work state and initializes the
amount of work remaining, Z, to F . After I ′, the task begins
taking a checkpoint, where I ′ = I initially or after a recovery,
and I ′ is I − L the rest of the time4. To allow for different

4This allows I to define a consistent period for the initiation of the
checkpointing process.

TABLE IV
MAPREDUCE MODEL PARAMETERS

Param Description
n Number of cores allocated to a map-reduce application.
M Number of map tasks.
R Number of reduce tasks.

FM Failure free execution time of a single map task (days.).
FR Failure free execution time of a single reduce task (days.).

Map Phase

Reduce 
Phase

(a) App Instance

Work

DownComplete

FailF
M or R

(b) Task Instance

M Complete

Fig. 4. MapReduce Finite State Machines

checkpointing designs, C is distinguishable from L in that C
is the overhead during which no work is accomplished, and L
is the total time before a checkpoint is committed. This allows
a checkpoint to be initiated, but then to continue concurrently
with additional work and then to be committed at a later point
in time. Once a checkpoint is committed, a rollback recovery
need not re-execute any work implied by the checkpoint, and
Z is decreased by the work accomplished in the cycle. This
cycle can be seen in the FSM through the Checkpoint and
Overlap Work states back to the Work state.

At any time, a failure may occur and is signaled by the core
on which the task is executing. If Coord is true, the failure of
a core is conveyed to all the task instances for the app. This
is denoted by the Fail transition to the Down state. When the
failed core comes back up, the task (or all tasks if Coord is
true) transition through Recover and return to the Work state
after R time has elapsed.

B. MapReduce Model

The map-reduce model is defined by the parameters given
in Table IV. A map-reduce application instance A is given n
cores with which to complete its work. A is responsible for
shepherding the set of M map tasks through the map phase of
the computation followed by the shepherding of the R reduce
tasks through the reduce phase (see Figure 4(a)). Only when
all map tasks have completed does A transition to the reduce
phase, and once this occurs, the work of the map phase is
committed and need not be re-executed even with subsequent
core failures. For each phase, A maintains sets tracking the
tasks – Outstanding for a task which has not yet performed
its work, Inprogress for the set of tasks currently operating
on some core, and, for each core, a set of Completed tasks
for that core. In the absence of failures, the management of a
task proceeds from Outstanding to Inprogress (when the task
is scheduled) and from Inprogress to Completed.

The FSM for an individual map or reduce task is much
simpler than the checkpointing model, as seen in Figure 4(b).
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Fig. 5. Failure Rate as n Scales

A task starts in the Work state and either transitions to
Complete (after time equal to FM or FR), if no failure occurs,
or transitions to Down if the core that it is executing on fails.

When a failure occurs, A takes the task that was Inprogress
along with all of the Complete tasks for the affected core and
places them back in the Outstanding set. This allows us to
model the reallocation of these tasks to non-failed cores as
implemented in the MapReduce runtime.

V. FAILURE RATE ANALYSIS

Given the MTBF for a set of components, the rate, λ,
associated with the failure interval is given by 1/MTBF. In a
parallel system, the overall system is considered up if all n
elements are up, and the overall system is considered down if
any of the n elements have failed. We use λn to denote the rate
of failure for the n-collection and λn is given by 1/MTBFn.
As noted in Section I, work in assessing fault tolerance in
parallel systems has assumed failure independence and failure
arrival following a Poisson process. This implies that

λn = n · λ (1)

This has been used in predicting the performance of coordi-
nated checkpointing in parallel systems [30], [31], [32].

However, the availability of the LANL failure data provides
us with a new opportunity to evaluate whether or not the
simplifying assumptions that give us Equation (1) are valid.
In particular, we can employ CFTsim with a specialized
application model to experimentally determine MTBFn as we
vary n for our input datasets of S18, S19, and S20, and
we can then assess whether or not Equation (1) holds for
these systems. For this application model, we let the CFTsim
scheduler select a random set of n cores and initiate the app
instance. The app instance then simply waits until all cores are
up and measures, as its expected execution time Ei, the time
interval until some core in the set goes down. This completes
the app instance with an expected execution time equivalent
to the TBF for the given set of n cores and given start time.
By iteratively repeating the process with randomly generated
start timesover a large sampling of n cores from the overall
set of N , we obtain our experimental value of MTBFn, and
may then calculate λn.

In Figure 5 we show the results of executing CFTsim with
this λn app model for each of the systems under study. For
each system, we vary n up to the number of nodes in the

system, and operate in a configuration with one core per node5.
The empirical determination of λn yields a lower failure rate
than the nλ assumption, and we see that the difference can be
substantial: theory overpredicts the failure rate consistently by
50%, even across the different systems. This discrepancy with
theory would be explained by (i) a lack of failure independence
and/or (ii) a violation of the Poisson assumptions. The latter
was substantiated previously by the poor fit of the exponential
to the empirical CDF in Figure 2.

VI. CHECKPOINTING

The availability of the LANL failure data provides us with
the opportunity to evaluate how closely existing theoretical
results match experience with real systems. In particular, we
examine (a) the expected execution time when checkpointing
is not employed and (b) the optimal checkpointing interval
when it is.

The execution time, EF , of a program (assuming n =
1) without checkpointing is predicted by Equation 2 (see
Duda [33]).

EF =
(eλF − 1)

λ
(2)

Equation 2 can be extended for parallel applications (that are
coordinated in the sense that a failure on any core requires
all cores to revert to a prior checkpoint) by using either nλ
(denoted [P1]) or our empircally determined λn (denoted [P2])
for the failure rate.

In the absence of checkpointing, (I = F ), if the application
has causal communication, the failure of any of the cores
involved in the computation would require all of the tasks to
restart from the beginning. Figure 6 shows the execution time
for applications running in such an environment on S18 and
on S206 both with F = 4 and F = 8. On each of the plots, we
show the CFTsim calculated execution time as a function of
the number of cores employed for the app. In each plot we also
show the predicted performance based on Equation 2, for P1
(nλ) and for P2 (empirical λn). Here, we see that the accepted
theoretical results (P1) do not match the simulated execution
times that are based on empirical data; in some cases (F = 8),
the discrepancy is quite dramatic. While the P2 calculation
is consistently superior to the P1 calculation, it also fails to
accurately predict the exection times based on empirical data.

We also consider the no checkpointing case where the
application is able to perform its tasks independently. In
this case, the failure of one core has no effect on the tasks
executing on the other cores, and the total execution time
will be determined by the maximum time (relative to the
application start time) of any core to attain F continuous
uptime. Results for this case are shown in Figure 7 for S18
and S20 and, for each system, we show the F = 4 and F = 8
cases. As expected, the execution time approaches a maximum
that is dependent on the underlying failure rate.

5Increasing the number of cores per node would artificially create depen-
dence between the failures of the cores.

6Again, the simulation of S19 generated results that are nearly identical to
S18 and are not presented.
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When checkpointing is used, a checkpoint interval, I , must
be selected, and this interval represents a tradeoff between
failure resilience and performance overhead. If checkpoints
are taken too infrequently, significant computation may be lost
when the program restarts from a checkpoint, but if check-
points are taken too frequently, the creation of checkpoints
can become a significant overhead to execution time.

Equation 3 predicts the optimal checkpoint interval value,
denoted Iopt, assuming n = 1 and C = L = R (result by
Young [12]).7

Iopt =
√

2C/λ (3)

7While our simulator can model the cases where C 6= L 6= R (see extended
theory by Vaidya [13]), space constraints prevented us from presenting such
results here.
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Fig. 8. Coordinated Checkpointing App Execution Time vs. I for n = 1

Again, this result can be extended to coordinated checkpoint-
ing applications by using either nλ (denoted [P1]) or our
empircally determined λn (denoted [P2]) for the failure rate.

To see the effect of checkpoint interval on execution time,
we simulate program execution under different values of I
using CFTsim. To enable clear comparison with the theoretical
work, we begin with the n = 1 case, illustrated for S18 in
Figure 8. For each value of F at 4 days and 8 days, we
compare two different checkpoint overhead times, C = 1
and C = 5 minutes8. For these runs, L = C and R = 10
minutes. In each graph we present simulated execution time
as the checkpoint interval, I , varies.

Figure 9 shows the effect of checkpoint interval on exe-
cution time for larger values of n (64, 128, and 256), using
the empirical failure data for S18 and the same values for
C (1 and 5 minutes) and F (4 and 8 days), by presenting
the CFTsim-calculated execution times for various values
of I . The checkpoint interval tradeoff is obvious from the
figure; with small values of I , the induced checkpointing
overhead severely affects performance, but as I increases
beyond some optimal point, performance degrades as failures
cause increasing re-execution.

By inspecting the data from Figure 9, we determined
the optimal values for I , and those values are presented in
Tables V and VI along with the values for Iopt predicted
by Equation 3 for (P1) and (P2). Note that while the theory
suggests that the optimal interval should be independent of
F , we do observe different values when using the empirical
data. Moreover, we see that the predicted values differ from
the CFTsim derived values, and this difference increases as we
scale n, so that for n = 256, the difference is approximately
a factor of 2. Fortunately for S18, this miscalculation in Iopt

8These values of C are consistent with [34], which suggests an upper bound
on C of 12 minutes for the BlueGene/L system.
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Fig. 9. Coordinated Checkpointing App Execution Time vs. I for
n=64,128,256 (S18)

TABLE V
COORDINATED APPLICATION Iopt FOR S18, C=1 MIN.

CFTsim
n P1 P2 F = 4 F = 8
1 795 795 1200 900
64 99 119 140 150

128 70 85 100 130
256 50 60 80 130

typically causes a performance degredation of less than 1%
because, while the difference between the predicted Iopt and
true Iopt may appear to be large, both values lie in the flat
range of the curve. Whether the impact of miscalculating Iopt
remains limited in larger systems is unknown.

In the absence of causal communication, uncoordinated

TABLE VI
COORDINATED APPLICATION Iopt FOR S18, C=5 MIN.

CFTsim
n P1 P2 F = 4 F = 8
1 1778 1778 2000 2500

64 222 266 320 340
128 157 190 280 300
256 111 134 220 220
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Fig. 10. Uncoordinated Checkpointing App Execution Time vs. I for
n=1,64,128,256 (S18)

checkpoints may be employed to achieve fault tolerance.
Figure 10 shows simulated execution time as we vary the
checkpoint interval for this uncoordinated checkpointing case,
and we show data series for n = 1, 64, 128 and 256 for S18
and for the cases where F = 4 and F = 8. For both of these
graphs, we used a checkpoint overhead, C, of 1 minute. When
n is small, we achieve minimum execution times of 4.01 and
8.02 days, respectively, and this is obtained when I = 1000.

VII. MAPREDUCE

A significant advantage of the MapReduce application
model is its comprehension of fault-tolerance. Each application
consists of a phase of independent map tasks followed by a
phase of independent reduce tasks. The MapReduce runtime
monitors the tasks and restarts those that fail whether due to
hardware failure or for other reasons.

The main goal of our MapReduce simulation is to determine
the characteristics of this model in the presence of hardware
failures. To that end, we use a methodology similar to the
one described for checkpointing (Sections VI). However, in
this case, the fault tolerance mechanism is one of reexecution,
where all map or reduce tasks from a failed core are reallo-
cated dynamically to operational cores whether the tasks had
completed or not (i.e. partial results are stored locally), and
execution is repeated in its entirety.
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Fig. 11. MapReduce performance for small n

To isolate the reexecution behavior of MapReduce, which
is similar to independent checkpointing in that the failure
of one core does not have an impact on the work currently
underway at the other cores, we model each application as
comprising M identical map tasks, which each have a failure-
free execution time of FM , and an empty reduce phase.
When we compare this with the checkpointing fault tolerance
mechanism, the MapReduce approach elects to pay the failure
penalty of reexecution rather than the ongoing overhead of
periodic checkpoints.

To understand how MapReduce performs as we scaled our
applications, we repeat our simulations for various values of
n. The number of map tasks, M , is our selectable parameter;
however, it is often more convenient to consider the number
of (failure-free) tasks per core, r, where r = M/n, and to fix
the amount of work executed on a core, denoted F , and from
this and r, compute FM . In the following experiments, we use
F = 4, 8, 12, r = 1 . . . 20, and n = 1 . . . 2569.

We begin by looking at small n in order to understand the
fault tolerance characteristics of MapReduce. The simulated
execution times for a small cluster (assuming failure charac-
teristics similar to either S18 and S20) are shown in Figure 11.

As one would expect, the execution time derived by CFTsim
decreases as we increase r. The n = 1 case demonstrates
the limit, whose value is governed by the probability of
failure of a single core (λ1). When n increases, but we still
have a small ratio of map tasks per core, a failure results
in a greater amount of re-execution work on the non-failed

9By way of comparison, recent work [35], reported the execution of a
MapReduce application with n = 3800, M = 80000, and FM ≈ 300 min.
The LANL cluster size did not permit the simulation of n that large, but the
total work, n ∗ FM , falls in the range of parameters we evaluated.
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Fig. 12. MapReduce performance for large n

TABLE VII
VALUES OF r FOR MAPREDUCE PERFORMANCE WITHIN 1% OF LIMIT

n
2 4 8 64 128 256

F = 4 1/1/2 3/3/4 6/6/8 36/36/36 64/64/48 64/64/64
F = 8 2/2/2 4/4/6 8/8/12 48/48/48 64/64/64 64/64/64
F = 12 2/2/2 6/5/8 15/12/16 48/48/48 64/64/64 80/64/64

remaining cores. As r increases, and consequently M , the
granularity of the work to be reexecuted (FM ) is reduced,
and a failure allows the redistribution of the tasks of the core
to be “spread out” over the non-failed cores. When r is small
and FM is correspondingly larger, the redistribution is not as
efficient, so there is greater disparity between those cores that
have received re-execution work and those that have not. We
also expect and observe a diminishing return as M increases.
However, this limit does not change as n varies because we
are fixing the amount of work per core and the failure of one
core does not affect other cores, similar to the independent
checkpointing case.

Figure 12 presents MapReduce for S18 and S20 with larger
values of n. We observe the same trend toward the limit.
The natural question is: How large does M need to be to
get “close” to the limit? To gain some understanding into this
question, we defined “close” to be within 1% of the limit
and used CFTsim on all three systems with F values of 4,
8, and 12 to determine the value of r at which the expected
running time was within 1% of the limit. Table VII presents
this information, where each entry in the table is of the form
x/y/z where x represents the value of r for S18, y represents
the value of r for S19, and z for S20.

We see that the required value of our ratio of map tasks to
cores increases with n. For the lower values of n, r appears



to match well with n and then level off. Note, however, that
since r = M/n, each of these entries must be multiplied by
n to get the total number of map tasks M . Consequently,
this levelling-off property is critical as cluster systems scale;
otherwise, M would grow with n2— placing significant strain
on the MapReduce task scheduler.

VIII. SUMMARY AND CONCLUSION

As parallel systems become increasingly prevalent, under-
standing the real-world fault behavior of these systems is
becoming increasingly important. This paper evaluated the
conventional wisdom for fault-tolerance in clusters in the
context of multi-year empirical failure data.

Using a simulation-based methodology, we showed that the
emprical data exhibits the properties of a beta distribution
rather than the expected exponential distribution. We also
showed that the empirical data does not exhibit the indepen-
dent failures typically assumed in theory.

Given these observations, we demonstrated that several
theoretical results, which assumed properties not exhibited by
the real-world data, could not be expected to hold in practice.
In particular, the empirical data indicated that applications
with coordinated tasks may exhibit better performance in the
absence of checkpointing than predicted. Further, the predicted
optimal checkpointing interval may deviate from the true
optimal by a factor two.

Finally, we evaluated the performance of MapReduce in the
context of real-world failure data and identified the pressure
to decrease the size of individual map tasks as the cluster size
increases.

The continuance of this research will focus on the MapRe-
duce model and its fidelity. The simple reexecution perfor-
mance cost focus of the current work must be extended to
address overheads in scheduling and managing large numbers
of map and reduce tasks, as well as the cost of data redistri-
bution that must occur in the presence of failures to supply
reexecution tasks their input. We also wish to analyze real
applications and systems and thus to provide CFTsim with
targeted model parameters.
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