
Opposite page: Mars Rover.

Photo courtesy of NASA/JPL-Caltech

59

Sensing From Within

I see dead people.
Cole Sear (played by Haley Joel Osment) in Sixth Sense,

M. Night Shyamalan, 1999.

Opposite page: Candle Flame

Photo courtesy of Jon Sullivan (www.pdphoto.org)

Chapter 4

60

Cole Sear in Shyamalan's Sixth Sense is not referring to dead bodies lying in
front of him (for those who have not seen the movie). The five senses that most
humans relate to are: touch, vision, balance, hearing, and taste or smell. In all
cases our bodies have special sensory receptors that are placed on various parts
of the body to enable sensing. For example the taste receptors are concentrated
mostly on the tongue; the touch receptors are most sensitive on hands and the
face and least on the back and on limbs although they are present all over the
body, etc. Besides the difference in the
physiology of each kind of receptors there
are also different neuronal pathways and
thereby sensing mechanisms built into our
bodies. Functionally, we can say that each
type of sensory system starts with the
receptors which convert the thing they
sense into electrochemical signals that are
transmitted over neurons. Many of these
pathways lead to the cerebral cortex in the
brain where they are further processed
(like, "Whoa, that jalapeno is hot!!"). The
perceptual system of an organism refers to
the set of sensory receptors, the neuronal
pathways, and the processing of
perceptual information in the brain. The
brain is capable of combining sensory
information from different receptors to
create richer experiences than those
facilitated by the individual receptors.

The perceptual system of any organism includes a set of external sensors (also
called exteroceptors) and some internal sensing mechanisms (interoceptors or
proprioception). Can you touch your belly button in the dark? This is because of
proprioception. Your body's sensory system also keeps track of the internal state
of your body parts, how they are oriented, etc.

Sensing is an essential component of being a robot and every robot comes built
with internal as well as external sensors. It is not uncommon, for example, to find
sensors that are capable of sensing light, temperature, touch, distance to another
object, etc. An example of internal sensing in robots is the measurement of
movement relative to the robot's internal frame of reference. Sometimes also
called dead reckoning, it can be a useful sensing mechanism that you can use to
design robot behaviors.

Proprioception

Sensing from within

Get something really delicious to eat,
like a cookie, or a piece of chocolate,
or candy (whatever you fancy!). Hold
it in your right hand, and let your
right arm hang naturally on your
side. Now close your eyes, real tight,
and try to eat the thing you are
holding. Piece of cake! (well,
whatever you picked to eat :-)

Without fail, you were able to pick it
up and bring it to your mouth, right?

Give yourself a Snickers moment and
enjoy the treat.

Sensing From Within

61

Robots employ electromechanical sensors and there are different types of devices
available for sensing the same physical quantity. For example, one common
sensor found on many robots is a proximity sensor. It detects the distance to an
object or an obstacle. Proximity sensors can be made using different
technologies: infrared light, sonar, or even laser. Depending upon the type of
technology used, their accuracy, performance, as well as cost vary: infrared (IR)
is the cheapest, and laser is on the expensive side. Lets us take a look at the
perceptual system of your Scribbler robot starting with internal sensors.

Proprioception in the Scribbler

The Scribbler has three useful internal sensory mechanisms: stall, time, and
battery level. When your program asks the robot to move it doesn’t always imply
that the robot is actually physically moving. It could be stuck against a wall, for
example. The stall sensor in the Scribbler enables you to detect this. You have
already seen how you can use time to control behaviors using the
timeRemaining and wait functions. Also, for most movement commands, you
can specify how long you want that movement to take place (for example
forward(1, 2.5) means full-speed forward for 2.5 seconds). Finally, it is also
possible to detect battery power level so that you can detect when it is time to
change batteries in the robot.

Time

All computers come built-in with an internal clock. In fact, clocks are so
essential to the computers we use today that without them we would not have
computers at all! Your Scribbler robot can use the computer’s clock to sense
time. It is with the help of this clock that we are able to use time in functions like
timeRemaining, wait, and other movement commands. Just with these facilities
it is possible to define interesting automated behaviors.

Do This: Design a robot program for the Scribbler to draw a square (say with
sides of 6 inches). To accomplish this, you will have to experiment with the
movements of the robot and correlate them with time. The two movements you
have to pay attention to are the rate at which the robot moves, when it moves in a
straight line; and the degree of turn with respect to time. You can write a
function for each of these:

def travelStraight(distance):
 # Travel in a straight line for distance inches

def degreeTurn(angle):
 # Spin a total of angle degrees

Chapter 4

62

That is, figure out by experimentation on your own robot (the results will vary
from robot to robot) as to what the correlation is between the distance and the
time for a given type of movement above and then use that to define the two
functions above. For example, if a robot (hypothetical case) seems to travel at the
rate of 25 inches/minute when you issue the command translate(1.0), then to
travel 6 inches you will have to translate for a total of (6*60)/25 seconds. Try
moving your robot forward for varying amounts for time at the same fixed speed.
For example try moving the robot forward at speed 0.5 for 3, 4, 5, 6 seconds.
Record the distance travelled by the robot for each of those times. You will
notice a lot of variation in the distance even for the same set of commands. You
may want to average those. Given this data, you can estimate the average amount
of time it takes to travel an inch. You can then define travelStraight as
follows:

def travelStraight(distance):
 # set up your robot’s speed
 inchesPerSec = <Insert your robot’s value here>

 # Travel in a straight line for distance inches
 forward(1, distance/inchesPerSec)

Similarly you can also determine the time required for turning a given number of
degrees. Try turning the robot at the same speed for varying amounts of time.
Experiment how long it takes the robot to turn 360 degrees, 720 degrees, etc.
Again, average the data you collect to get the number of degrees per second.
Once you have figured out the details use them to write the degreeTurn
function. Then use the following main program:

def main():
 # Transcribe a square of sides = 6 inches

 for side in range(4):
 travelStraight(6.0)
 degreeTurn(90.0)

 speak("Look at the beautiful square I made.")

main()

Run this program several times. It is unlikely that you will get a perfect square
each time. This has to do with the calculations you performed as well with the
variation in the robot's motors. They are not precise. Also, it generally takes
more power to move from a still stop than to keep moving. Since you have no
way of controlling this, at best you can only approximate this type of behavior.

Sensing From Within

63

Over time, you will also notice that the error will aggregate. This will become
evident in doing the exercise below.

Do This: Building on the ideas from the previous exercise, we could further
abstract the robot's drawing behavior so that we can ask it to draw any regular
polygon (given the number of sides and length of each side). Write the function:

def drawPolygon(SIDES, LENGTH):
 # Draw a regular polygon with SIDES number of sides
 # and each side of length LENGTH.

Then, we can write a regular polygon drawing robot program as follows:

def main():
 # Given the number of sides and the length of each side,
 # draw a regular polygon

 # First, ask the user for the number of sides and
 # side length
 print “Given # of sides and side length I will draw”
 print “a polygon for you. Specify side length in inches.”

 nSides = input("Enter # of sides in the polygon: ")
 sideLength = input("Enter the length of each side: ")

 # Draw the polygon
 drawPolygon(nSides, sidelength)

 speak("Look! I can draw.")

main()

To test the program, first try drawing a square of sides 6 inches as in the previous
exercise. Then try a triangle, a pentagon, hexagon, etc. Try a polygon with 30
sides of length 0.5 inches. What happens when you give 1 as the number of
sides? What happens when you give zero (0) as the number of sides?

A Slight Detour: Random Walks

One way you can do interesting things with robot drawings is to inject some
randomness in how long the robot does something. Python, and most
programming languages, typically provide a library for generating random
numbers. Generating random numbers is an interesting process in itself but we
will save that discussion for a later time. Random numbers are very useful in all
kinds of computer applications, especially games and in simulating real life
phenomena. For example, in estimating how many cars might be entering an

Chapter 4

64

already crowded highway in the peak of rush hour? Etc. In order to access the
random number generating functions in Python you have to import the random
library:

from random import *

There are lots of features available in this library but we will restrict ourselves
with just two functions for now: random and randint. These are described
below:

random() Returns a random number between 0.0 and 1.0.

randint(A, B) Returns a random number in the range [A…B].

Here is a sample interaction with these two functions:

As you can see, using the random number library is easy enough, and similar to
using the Myro library for robot commands. Given the two functions, it is
entirely up to you how you use them. Look at the program below:

Sensing From Within

65

def main():
 # generate 10 random polygons
 for poly in range(10):
 # generate a random polygon and draw it
 Print “Place a new color in the pen port and then…”
 userInput = input("Enter any number: ")
 sides = randint(3, 8)
 size = randint(2, 6)
 drawPolygon(sides, size)

 # generate a random walk of 20 steps
 for step in range(20):
 travelStraight(random())
 degreeTurn(randrange(0, 360))

The first loop in the program draws 10 random polygons of sizes ranging from 3
to 8 sides and each side in the range 2 to 6 inches. The second loop carries out a
random walk of 20 steps.

Asking Questions?

As you can see from above, it is easy to program various kinds of movements
into the Scribbler. If there is a pen in the pen port, the Scribbler draws a path.
Also in the example above, you can see that we can stop the program
temporarily, pretend that we are taking some input and use that as an opportunity
to change the pen and then go on. Above, we used the Python input command to
accomplish this. There is a better way to do this and it uses a function provided
in the Myro library:

>>> askQuestion("Are you ready?")

When this function is executed, a dialog window pops up as shown below:

When you press your mouse on any of the choices (Yes/No), the window
disappears and the function returns the name of the key selected by the user as a
string. That is, if in the above window you pressed the Yes key, the function will
return the value:

Chapter 4

66

>>> askQuestion("Are you ready?")
'Yes'

The askQuestion command can be used in the program above as follows:

askQuestion("Change my pen to a different color and press 'Yes'
when ready.")

While this is definitely more functional than our previous solution, we can
actually do better. For example, what happens when the user presses the No
button in the above interaction? One thing you know for sure is that the function
will return the string 'No'. However, the way we are using this function, it really
does not matter which key the user presses. askQuestion is designed so it can be
customized by you so that you can specify how many button choices you want to
have in the dialog window as well as what the names of those buttons would be.
Here is an illustration of how you would write a better version of the above
command:

askQuestion("Change my pen to a different color and press 'OK'
when ready", ["OK"])

Now this is certainly better. Notice that the function askQuestion can be used
with either one parameter or two. If only one parameter is specified, then the
default behavior of the function is to offer two button choices: 'Yes' and 'No'.
However, using the second parameter you can specify, in a list, any number of
strings that will become the choice buttons. For example,

askQuestion("What is your favorite ice cream flavor?",
["Vanilla", "Chocolate", "Mango", "Hazelnut", "Other"])

Sensing From Within

67

This will be a very handy function to use in many different situations. In the next
exercise, try and use this function to become familiar with it.

Do This: Write a Scribbler program of your own that exploits the Scribbler's
movements to make random drawings. Make sure you generate drawings with at
least three or more colors. Because of random movements, your robot is likely to
run into things and get stuck. Help your robot out by picking it up and placing it
elsewhere when this happens.

Back to time…

Most programming languages also allow you to access the internal clock to keep
track of time, or time elapsed (as in a stop watch), or in any other way you may
want to make use of time (as in the case of the wait) function. The Myro library
provides a simple function that can be used to retrieve the current time:

>>> currentTime()
1169237231.836

The value returned by currentTime is a number that represents the seconds
elapsed since some earlier time, whatever that is. Try issuing the command
several times and you will notice that the difference in the values returned by the
function represents the real time in seconds. For example:

>>> currentTime()
1169237351.5580001
>>> 1169237351.5580001 - 1169237231.836
119.72200012207031

That is, 119.722 seconds had elapsed between the two commands above. This
provides another way for us to write robot behaviors. So far, we have learned
that if you wanted your robot to go forward for 3 seconds, you could either do:

forward(1.0, 3.0)

or

Chapter 4

68

forward(1.0)
wait(3.0)
stop()

or

while timeRemaining(3.0):
 forward(1.0)
stop()

Using the currentTime function, there is yet another way to do the same thing:

startTime = currentTime() # record start time
while (currentTime() - startTime) < 3.0:
 forward(1.0)
stop()

The above solution uses the internal clock. First, it records the start time. Next it
enters the loop which first gets the current time and then checks to see if the
difference between the current time and start time is less than 3.0 seconds. If so,
the forward command is repeated. As soon as the elapsed time gets over 3.0
seconds, the loop terminates. This is another way of using the while-loop that
you learned in the previous chapter. In the last chapter, you learned that you
could write a loop that executed forever as shown below:

while True:
 <do something>

The more general form of the while-loop is:

while <some condition is true>:
 <do something>

That is, you can specify any condition in <some condition is true>. The
condition is tested and if it results in a True value, the step(s) specified in <do
something> is/are performed. The condition is tested again, and so on. In the
example above, we use the expression:

(currentTime() - startTime) < 3.0

If this condition is true, it implies that the elapsed time since the start is less than
3.0 seconds. If it is false, it implies that more than 3.0 seconds have elapsed and
it results in a False value, and the loop stops. Learning about writing such
conditions is essential to writing smarter robot programs.

Sensing From Within

69

While it may appear that the solution that specified time in the forward
command itself seemed simple enough (and it is!), you will soon discover that
being able to use the internal clock as shown above provides more versatility and
functionality in designing robot behaviors. This, for example is how one could
program a vacuum cleaning robot to clean a room for 60 minutes:

startTime = currentTime()
while (currentTime() - startTime)/60.0 < 60.0:
 cleanRoom()

You have now seen how to write robot programs that have behaviors or
commands that can be repeated a fixed number of times, or forever, or for a
certain duration:

do something N times
for step in range(N):
 do something...

do something forever
while True:
 do something...

do something for some duration
while timeRemaining(duration):
 do something...

do something for some duration
duration = <some time in seconds>
startTime = currentTime()
while (currentTime() - startTime) < duration:
 do something...

All of the above are useful in different situations. Sometimes it becomes a matter
of personal preference.

Writing Conditions

Let us spend some time here to learn about conditions you can write in while-
loops. The first thing to realize is that all conditions result in either of two values:
True or False (or, alternately a 1 or a 0). These are Python values, just like
numbers. You can use them in many ways. Simple conditions can be written
using comparison (or relational) operations: < (less than), <= (less than or equal
to), > (greater than), >= (greater than or equal to), == (equal to), and != (not

Chapter 4

70

equal to). These operations can be used to compare all kinds of values. Here are
some examples:

>>> 42 > 23
True
>>> 42 < 23
False
>>> 42 == 23
False
>>> 42 != 23
True
>>> (42 + 23) < 100
True
>>> a, b, c = 10, 20, 10
>>> a == b
False
>>> a == c
True
>>> a == a
True
>>> True == 1
True
>>> False == 1
False

The last two examples above also show how the values True and False are
related to 1 and 0. True is the same as 1 and 0 is the same as False. You can
form many useful conditions using the comparison operations and all conditions
result in either True (or 1) or False (or 0). You can also compare other values,
like strings, using these operations:

>>> "Hello" == "Good Bye"
False
>>> "Hello" != "Good Bye"
True
>>> "Elmore" < "Elvis"
True
>>> "New York" < "Paris"
True
>>> "A" < "B"
True
>>> "a" < "A"
False

Study the above examples carefully. Two important things to notice are: strings
are compared using alphabetical ordering (i.e. lexicographically). Thus "Elmore"
is less than "Elvis" since "m" is less than "v" in those strings ("El" being equal

Unicode

Text characters have an

internal computer coding or

representation that enforces

lexicographic ordering. This

internal encoding is very

important in the design of

computers and this is what

enables all computers and

devices like iPhones etc. to

exchange information

consistently. All language

characters in the world have

been assigned a standard

computer encoding. This is

called Unicode.

Sensing From Within

71

in both). That is also why "New York" is less than "Paris" (since "N" is less
than "P"). The second important thing to note is that uppercase letters are less
than their equivalent lowercase counterparts ("A" is less than "a"). This is by
design (see box on right).

Besides relational operations you can build more complex conditional
expressions using the logical operations (also called Boolean operations): and,
or, and not. Here are some examples:

>>> (5 < 7) and (8 > 3)
True
>>> not ((5 < 7) and (8 > 3))
False
>>> (6 > 7) or (3 > 4)
False
>>> (6 > 7) or (3 > 2)
True

We can define the meaning of logical operators as follows:

 <expression-1> and <expression-2>: Such an expression will result
in a value True only if both <expression-1> and <expression-2> are
True. In all other cases (i.e. if either one or both of <expression-1> and
<expression-2> are False) it results in a False.

 <expression-1> or <expression-2>: Such an expression will result
in a value True if either <expression-1> or <expression-2> are True
or if both are True. In all other cases (i.e. if both of <expression-1>
and <expression-2> are False) it results in a False.

 not <expression>: Such an expression will result in a value True if
<expression> is False or False if <expression> is True). I.e., it flips
or complements the value of expression.

These operators can be combined with relational expressions to form arbitrarily
complex conditional expressions. In fact, any decision making in your programs
boils down to forming the appropriate conditional expressions. The logical
operators were invented by the logician George Boole in the mid 19th century.
Boolean algebra, named after Boole, defines some simple, yet important laws
that govern the behavior of logical operators. Here are some useful ones:

Chapter 4

72

 (A or True) is always True.
 (not (not A)) is just A
 (A or (B and C)) is the same as ((A or B) and (A or C))
 (A and (B or C)) is the same as ((A and B) or (A and C))
 (not (A or B)) is the same as ((not A) and (not B))
 (not (A and B)) is the same as ((not A) or (not B))

These identities or properties can help you in simplifying conditional
expressions. The conditional expressions can be used to write several useful
conditions to control the execution of some program statements. These allow you
to write conditional repetitions as:

while <some condition is true>:
 <do something>

Now you can see why the following is a way of saying, “do something forever”:

while True:
 <do something>

Since the condition is always True the statements will be repeated forever.
Similarly, in the loop below:

while timeRemaining(duration):
 <do something>

As soon as the duration is up, the value of the timeRemaining(duration)
expression will become False and the repetition will stop. Controlling the
repetitions based on conditions is a powerful idea in computing. We will be
using these extensively to control the behaviors of robots.

Sensing Stall

We mentioned in the beginning of this chapter that the Scribbler also has a way
of sensing that it is stalled when trying to move. This is done by using the Myro
function getStall:

getStall() Returns True if the robot has stalled, False otherwise.

You can use this to detect that the robot has stalled and even use it as a condition
in a loop to control behavior. For example:

while not getStall():
 <do something>

Sensing From Within

73

That is, keep doing <do something> until the robot has stalled. Thus, you could
write a robot behavior that goes forward until it bumps into something, say a
wall, and then stops.

while not getStall():
 forward(1.0)
stop()

speak("Ouch! I think I bumped into something! ")

In the above example, as long as the robot is not stalled, getStall() will return
False and hence the robot will keep going forward (since not False is True).
Once it does bump into something, getStall() will return True and then the
robot will stop and speak.

Do This: Write a complete program for the Scribbler to implement the above
behavior and then observe the behavior. Show this to some friends who are not in
your course. Ask them for their reactions. You will notice that people will tend to
ascribe some form of intelligence to the robot. That is, your robot is sensing that
it is stuck, and when it is, it stops trying to move and even announces that it is
stuck by speaking. We will return to this idea of artificial intelligence in a later
chapter.

Sensing Battery Power Levels

Your Scribbler robot runs on 6 AA batteries. As
with any other electronic device, with use, the
batteries will ultimately drain and you will need
to replace with fresh ones. Myro provides an
internal battery-level sensing function, called
getBattery that returns the current voltage
being supplied by the battery. When the battery
levels go down, you will get lower and lower
voltages causing erratic behavior. The battery
voltage levels of your Scribbler will vary
between 0 and 9 volts (0 being totally drained).
What low means is something you will have to
experiment and find out. The best way to do
this is to record the battery level when you
insert a fresh set of batteries. Then, over time,
keep recording the battery levels as you go.

The Scribbler also has some built-in battery-level indicator lights. The red LED
on the robot remains lit when the power levels are high (or in the good range). It

Disposing Batteries

Make sure that you dispose

used batteries properly and

responsibly. Batteries may

contain hazardous materials

like cadmium, mercury, lead,

lithium, etc. which can be

deadly pollutants if disposed in

landfills. Find out your nearest

battery recycling or disposal

option to ensure proper

disposal.

Chapter 4

74

starts to flash when the battery level runs low. There is also a similar LED on the
Fluke dongle. Can you find it? Just wait until the battery levels run low and you
will see it flashing.

You can use battery-level sensing to define behaviors for robots so that they are
carried out only when there is sufficient power available. For example:

while (getBattery() >= 5.0) and timeRemaining(duration):
 <do something>

That is, as long as battery power is above 5.0 and the time limit has not exceeded
duration, <do something>.

World Population, revisited

The ability to write conditional expressions also enables us to define more
sophisticated computations. Recall the world population projection example from
previous chapter. Given the population growth rate and the current population,
you can now write a program to predict the year when the world’s population
will increase to beyond a given number, say 9 billion. All you have to do is write
a condition-driven repetition that has the following structure:

year = <current year>
population = <current population>
growthRate = <rate of growth>

repeat as long as the population stays below 9000000000
while population < 9000000000:
 # compute the population for the next year
 year = year + 1
 population = population * (1+growthRate)

print "By the year", year, "the world’s population"
print "will have exceeded 9 billion."

That is, add population growth in the next year if the population is below 9
billion. Keep repeating this until it exceeds 9 billion.

Do This: Complete the program above and compute the year when the world’s
population will exceed 9 billion. To make your program more useful make sure
you ask the user to input the values of the year, population, growth rate, etc. In
fact, you can even ask the user to enter the population limit so you make use the
program for any kinds of predictions (8 billion? 10 billion?). How would you

Sensing From Within

75

change the program so it prints the population projection for a given year, say
2100?

Summary

In this chapter you have learned about proprioception or internal sensory
mechanisms. The Scribbler robot has three internal sensory mechanisms: time,
stall, and battery-level. You have learned how to sense these quantities and also
how to use them in defining automated robot behaviors. You also learned about
random number generation and used it to define unpredictable robot behaviors.
Later, we will also learn how to use random numbers to write games and to
simulate natural phenomena. Sensing can also be used to define conditional
repetitive behaviors using conditional expressions in while-loops. You learned
how to construct and write different kinds of conditions using relational and
logical operations. These will also become valuable in defining behaviors that
use external sensory mechanisms and also enable us to write more explicit
decision-making behaviors. We will learn about these in the next chapter.

Myro Review

randomNumber()
Returns a random number in the range 0.0 and 1.0. This is an alternative Myro
function that works just like the random function from the Python random library
(see below).

askQuestion(MESSAGE-STRING)

A dialog window with MESSAGE-STRING is displayed with choices: 'Yes' and
'No'. Returns 'Yes' or 'No' depending on what the user selects.

askQuestion(MESSAGE-STRING, LIST-OF-OPTIONS)
A dialog window with MESSAGE-STRING is displayed with choices indicated in
LIST-OF-OPTIONS. Returns option string depending on what the user selects.

currentTime()
The current time, in seconds from an arbitrary starting point in time, many years
ago.

getStall()

Returns True if the robot is stalled when trying to move, False otherwise.

getBattery()
Returns the current battery power level (in volts). It can be a number between 0
and 9 with 0 indication no power and 9 being the highest. There are also LED

Chapter 4

76

power indicators present on the robot. The robot behavior becomes erratic when
batteries run low. It is then time to replace all batteries.

Python Review

True, False

These are Boolean or logical values in Python. Python also defines True as 1 and
False as 0 and they can be used interchangeably.

<, <=, >, >=, ==, !=
These are relational operations in Python. They can be used to compare values.
See text for details on these operations.

and, or, not
These are logical operations. They can be used to combine any expression that
yields Boolean values.

random()
Returns a random number between 0.0 and 1.0. This function is a part of the
random library in Python.

randint(A, B)
Returns a random number in the range A (inclusive) and B (exclusive). This
function is a part of the random library in Python.

Exercises

1. Write a robot program to make your Scribbler draw a five point star. [Hint:
Each vertex in the star has an interior angle of 36 degrees.]

2. Experiment with Scribbler movement commands and learn how to make it
transcribe a path of any given radius. Write a program to draw a circle of any
input diameter.

3. Write a program to draw other shapes: the outline of a house, a stadium, or
create art by inserting pens of different colors. Write the program so that the
robot stops and asks you for a new color.

4. If you had an open rectangular lawn (with no trees or obstructions in it) you
could use a Zanboni like strategy to mow the lawn. Start at one end of the lawn,
mow the entire length of it along the longest side, turn around and mow the
entire length again, next to the previously mowed area, etc. until you are done.

Sensing From Within

77

Write a program for your Scribbler to implement this strategy (make the
Scribbler draw its path as it goes).

5. Enhance the random drawing program from this chapter to make use of
speech. Make the robot, as it is carrying out random movements, to speak out
what it is doing. As a result you will have a robot artist that you have created!

6. Rewrite your program from the previous exercise so that the random behavior
using each different pen is carried out for 30 seconds.

7. The Myro library also provides a function called, randomNumber() that
returns a random number in the range 0.0 and 1.0. This is similar to the function
random() from the Python library random that was introduced in this chapter.
You can use either based on your own preference. You will have to import the
appropriate library depending on the function you choose to use. Experiment
with both to convince yourself that these two are equivalent.

8. In reality, you only need the function random() to generate random numbers
in any range. For example, you can get a random number between 1 and 6 with
randRange(1,6) or as shown below:

randomValue = 1 + int(random()*6)

The function int() takes any number as its parameter, truncates it to a whole
number and returns an integer. Given that random() returns values between 0.0
(inclusive) and 1.0 (exclusive), the above expression will assign a random value
between 1..5 (inclusive) to randomValue. Given this example, write a new
function called myRandRange() that works just like randrange():
def myRandRange(A, B):

 # generate a random number between A..B
 # (just like as defined for randrange)

9. What kinds of things can your robot talk about? You have already seen how to
make the robot/computer speak a given sentence or phrase. But the robot can
also "talk" about other things, like the time or the weather.

One way to get the current time and date is to import another Python library
called time:

>>> from time import *

The time module provides a function called localtime that works as follows:

Chapter 4

78

>>> localtime()
(2007, 5, 29, 12, 15, 49, 1, 149, 1)

localtime returns all of the following in order:

1. year
2. month
3. day
4. hour
5. minute
6. seconds
7. weekday
8. day of the year
9. whether it is using daylight savings time, or not

In the example above, it is May 29, 2007 at 12:15pm and 49 seconds. It is also
the 1st day of the week, 149 day of the year, and we are using daylight savings
time. You can assign each of the values to named variables as shown below:

year, month, day,…, dayOfWeek = localtime()

Then, for the example above, the variable year will have the value 2007; month
will have the value 5, etc. Write a Python program that speaks out the current
date and time.

Sensing From Within

79

	Chapter4-H
	Chapter4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (GRACoL2006_Coated1v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (GRACoL2006_Coated1v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Lulu'] Use these settings to create Adobe PDF documents best suited for Lulu's printing. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (GRACoL2006_Coated1v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (GRACoL2006_Coated1v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (GRACoL2006_Coated1v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Lulu'] Use these settings to create Adobe PDF documents best suited for Lulu's printing. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (GRACoL2006_Coated1v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

