

Opposite page: Mars Rover.

Photo courtesy of NASA/JPL-Caltech

35

Building Robot Brains

What a splendid head, yet no brain.
Aesop (620 BC-560 BC)

Opposite page: Home Simpson’s Brain

Photo courtesy of The Simpson’s Trivia (www.simpsonstrivia.com)

Chapter 3

36

If you think of your robot as a creature that acts in the world, then by
programming it, you are essentially building the creature's brain. The power of
computers lies in the fact that the same computer or the robot can be supplied a
different program or brain to make it behave like a different creature. For
example, a program like Firefox or Explorer makes your computer behave like a
web browser. But switching to your Media Player, the computer behaves as a
DVD or a CD player. Similarly, your robot will behave differently depending
upon the instructions in the program that you have requested to run on it. In this
chapter we will learn about the structure of Python programs and how you can
organize different robot behaviors as programs.

The world of robots and computers, as you have seen so far, is intricately
connected. You have been using a computer to connect to your robot and then
controlling it by giving it commands. Most of the commands you have used so
far come from the Myro library which is specially written for easily controlling
robots. The programming language we are using to do the robot programming is
Python. Python is a general purpose programming language. By that we mean
that one can use Python to write software to control the computer or another
device like a robot through that computer. Thus, by learning to write robot
programs you are also learning how to program computers. Our journey into the
world of robots is therefore intricately tied up with the world of computers and
computing. We will continue to interweave concepts related to robots and
computers throughout this journey. In this chapter, we will learn more about
robot and computer programs and their structure.

Basic Structure of a Robot Brain

The basic structure of a Python program (or a robot brain) is shown below:

def main():
 <do something>
 <do something>
 ...

This is essentially the same as defining a new function. In fact, here, we are
adopting a convention that all our programs that represent robot brains will be
called main. In general, the structure of your robot programs will be as shown
below (we have provided line numbers so we can refer to them):

Line 1: from myro import *
Line 2: init()

Line 3: <any other imports>

Building Robot Brains

37

Line 4: <function definitions>
Line 5: def main():
Line 6: <do something>
Line 7: <do something>
Line 8: ...

Line 9: main()

Every robot brain program will begin with the first two lines (Line 1 and Line
2). These, as you have already seen, import the Myro library and establish a
connection with the robot. In case you are using any other libraries, you will then
import them (this is shown in Line 3). This is followed by the definitions of
functions (Line 4), and then the definition of the function, main. Finally, the last
line (Line 9) is an invocation of the function main. This is placed so that when
you load this program into the Python Shell the program will start executing. In
order to illustrate this, let us write a robot program that makes it do a short dance
using the yoyo and wiggle movements defined in the last chapter.

File: dance.py
Purpose: A simple dance routine

First import myro and connect to the robot

from myro import *
initialize("com5")

Define the new functions...

def yoyo(speed, waitTime):
 forward(speed, waitTime)
 backward(speed, waitTime)

def wiggle(speed, waitTime):
 motors(-speed, speed)
 wait(waitTime)
 motors(speed, -speed)
 wait(waitTime)
 stop()

The main dance program
def main():
 print "Running the dance routine..."
 yoyo(0.5, 0.5)
 wiggle(0.5, 0.5)
 yoyo(1, 1)
 wiggle(1, 1)
 print "...Done"

main()

Chapter 3

38

We have used a new Python command in the definition of the main function: the
print command. This command will print out the text enclosed in double quotes
(") when you run the program. This program is not much different from the
dance function defined in the previous chapter except we are using a spin motion
to wiggle. However, instead of naming the function dance we are calling it main.
As we mentioned earlier, this is just a naming convention that we are adopting
that makes it easy to identify the main program in a program file.

Do This: In order to run this program on the robot, you can start IDLE, create a
new window, enter the program in it, save it as a file (dance.py) and then select
the Run Module feature in the window's Run menu. Alternately, to run this
program, you can enter the following command in the Python Shell:

>>> from dance import *

This is essentially equivalent to the Run Module option described above. When
you run the program you will notice that the robot carries out the dance routine
specified in the main program. Also notice the two messages printed in the IDLE
window. These are the results of the print command. print is a very useful
command in Python and can be used to output essentially anything you ask it to.
While you are in this session, go ahead and change the print command to the
following:

speak("Running the dance routine")

speak is a Myro command that enables speech output from your computer. Go
ahead and change the other print command also to the speak command and try
your program. Once done, enter some other speak commands on the IDLE
prompt. For example:

speak("Dude! Pardon me, would you have any Grey Poupon?")

The speech facility is built into most computers these days. Later we will see
how you can find out what other voices are available and also how to change to
them.

Speaking Pythonese

We have launched you into the world of computers and robots without really
giving you a formal introduction to the Python language. In this section, we
provide more details about the language. What you know about Python so far is
that it is needed to control the robot. The robot commands you type are

Building Robot Brains

39

integrated into Python by way of the Myro library. Python comes with several
other useful libraries or modules that we will try and learn in this course. If you
need to access the commands provided by a library, all you have to do is import
them.

The libraries themselves are largely made up of sets of functions (they can
contain other entities but more on that later). Functions provide the basic
building blocks for any program. Typically, a programming language (and
Python is no exception) includes a set of pre-defined functions and a mechanism
for defining additional functions. In the case of Python, it is the def construct.
You have already seen several examples of function definitions and indeed have
written some of your own by now. In the def construct, when defining a new
function, you have to give the new function a name. Names are a critical
component of programming and Python has rules about what forms a name.

What’s in a name?

A name in Python must begin with either an alphabetic letter (a-z or A-Z) or the
underscore (i.e. _) and can be followed by any sequence of letters, digits, or
underscore letters. For example,

iRobot
myRobot
jitterBug
jitterBug2
my2cents
my_2_cents

are all examples of valid Python names. Additionally, another important part of
the syntax of names is that Python is case sensitive. That is the names myRobot
and MyRobot and myrobot are distinct names as far as Python is concerned. Once
you name something a particular way, you have to consistently use that exact
case and spelling from then on. Well, so much about the syntax of names, the
bigger question you may be asking is what kinds of things can (or should) be
named?'

So far, you have seen that names can be used to represent functions. That is,
what a robot does each time you use a function name (like yoyo) is specified in
the definition of that function. Thus, by giving functions a name you have a way
of defining new functions. Names can also be used to represent other things in a
program. For instance, you may want to represent a quantity, like speed or time
by a name. In fact, you did so in defining the function yoyo which is also shown
below:

Chapter 3

40

def yoyo(speed, waitTime):
 forward(speed, waitTime)
 backward(speed, waitTime)

Functions can take parameters that help customize what they do. In the above
example, you can issue the following two commands:

>>> yoyo(0.8, 2.5)
>>> yoyo(0.3, 1.5)

The first command is asking to perform the yoyo behavior at speed 0.8 for 2.5
seconds where as the second one is specifying 0.3 and 1.5 for speed and time,
respectively. Thus, by parameterizing the function with those two values, you are
able to produce similar but varying outcomes. This idea is similar to the idea of
mathematical functions: sine(x) for example, computes the sine of whatever
value you supply for x. However, there has to be a way of defining the function
in the first place that makes it independent of specific parameter values. That is
where names come in. In the definition of the function yoyo you have named two
parameters (the order you list them is important): speed and waitTime. Then
you have used those names to specify the behavior that makes up that function.
That is the commands forward, and backward use the names speed and
waitTime to specify whatever the speed and wait times are included in the
function invocation. Thus, the names speed and waitTime represent or designate
specific values in this Python program.

Names in Python can represent functions as well as values. What names you use
is entirely up to you. It is a good idea to pick names that are easy to read, type,
and also appropriately designate the entity they represent. What name you pick to
designate a function or value in your program is very important, for you. For
example, it would make sense if you named a function turnRight so that when
invoked, the robot turned right. It would not make any sense if the robot actually
turned left instead, or worse yet, did the equivalent of the yoyo dance. But
maintaining this kind of semantic consistency is entirely up to you.

Values

In the last section we saw that names can designate functions as well as values.
While the importance of naming functions may be obvious to you by now,
designating values by names is an even more important feature of programming.
By naming values, we can create names that represent specific values, like the
speed of a robot, or the average high temperature in the month of December on
top of the Materhorn in Switzerland, or the current value of the Dow Jones Stock
Index, or the name of your robot, etc. Names that designate values are also called

Building Robot Brains

41

variables. Python provides a simple mechanism for designating values with
names:

speed = 0.75
aveHighTemp = 37
DowIndex = 12548.30
myFavoriteRobot = "C3PO"

Values can be numbers or strings (anything enclosed in double-quotes, "). The
above are examples of assignment statements in Python. The exact syntax of an
assignment statement is given below:

<variable name> = <expression>

You should read the above statement as: Let the variable named by <variable
name> be assigned the value that is the result of calculating the expression
<expression>. So what is an <expression>? Here are some examples:

>>> 5
5
>>> 5 + 3
8
>>> 3 * 4
12
>>> 3.2 + 4.7
7.9
>>> 10 / 2
5

What you type at the Python prompt (>>>) is actually called an expression. The
simplest expression you can type is a number (as shown above). A number
evaluates to itself. That is, a 5 is a 5, as it should be! And 5 + 3 is 8. As you can
see when you enter an expression, Python evaluates it and then outputs the result.
Also, addition (+), subtraction (-), multiplication (*), and division (/) can be
used on numbers to form expressions that involve numbers.

You may have also noticed that numbers can be written as whole numbers (3, 5,
10, 1655673, etc) or with decimal points (3.2, 0.5, etc) in them. Python (and most
computer languages) distinguishes between them. Whole numbers are called
integers and those with decimal points in them are called floating point numbers.
While the arithmetic operations are defined on both kinds of numbers, there are
some differences you should be aware of. Look at the examples below:

>>> 10.0/3.0
3.3333333333333335

Chapter 3

42

>>> 10/3
3
>>> 1/2
0
>>> 1.0/2
0.5

When you divide a floating point number by another floating point number, you
get a floating point result. However, when you divide an integer by another
integer, you get an integer result. Thus, in the examples above, you get the result
3.3333333333333335 when you divide 10.0 by 3.0, but you get 3 when you
divide 10 by 3. Knowing this, the result of dividing 1 by 2 (see above) is zero (0)
should not be surprising. That is, while the division operation looks the same (/),
it treats integers differently than floating point values. However, if at least one of
the numbers in an arithmetic operation is a floating point number, Python will
give you a floating point result (see last example above). You should keep this in
mind. More on numbers later, before we get back to robots, let us quickly
introduce you to strings.

Computers came to be called so because they excelled in doing calculations.
However, these days, computers are capable of manipulating any kind of entity:
text, images, sounds, etc. Text is made of letters or characters and strings are
simply sequences of characters. Python requires that strings be written enclosed
in quotes: which could be single ('I am a string'), double ("Me too!"), or
even triple quotes ('''I'm a string as well!'''). Treating a string as a
value is a powerful feature of Python. Python also provides some operations on
strings using which you can write some useful string expressions. Here are some
examples:

>>> mySchool = "Bryn Mawr College"
>>> yourSchool = "Georgia Institute of Technology"
>>> print mySchool
Bryn Mawr College

>>> print yourSchool
Georgia Institute of Technology

>>> print mySchool, yourSchool
Bryn Mawr College Georgia Institute of Technology

>>> yourSchool+mySchool
'Georgia Institute of TechnologyBryn Mawr College'

>>> print yourSchool+mySchool
Georgia Institute of TechnologyBryn Mawr College

Building Robot Brains

43

Pay special attention to the last two examples. The operation + is defined on
strings and it results in concatenating the two strings. The print command is
followed by zero or more Python expressions, separated by commas. print
evaluates all the expressions and prints out the results on the screen. As you have
also seen before, this is a convenient way to print out results or messages from
your program.

A Calculating Program

Ok, set your robot aside for just a few more minutes. You have now also learned
enough Python to write programs that perform simple, yet interesting,
calculations. Here is a simple problem:

On January 1, 2008 the population of the world was estimated at approximately
6.650 billion people. It is predicted that at current rates of population growth,
we will have over 9 billion people by the year 2050. A gross estimate of
population growth puts the annual increase at +1.14% (it has been as high as
+2.2% in the past). Given this data, can you estimate by how much the world’s
population will increase in this year (2008)? Also, by how much will it increase
each day?

In order to answer the questions, all you have to do is compute 1.14% of 6.650
billion to get the increase in population this year. If you divide that number by
366 (the number of days in 2008) you will get average daily increase. You can
just use a calculator to do these simple calculations. You can also use Python to
do this in two ways. You can use it as a calculator as shown below:

>>> 6650000000*1.14/100.0
75810000.0

>>> 75810000.0/365.0
207131.1475409836

That is, in this year there will be an increase of 75.81 million in the world’s
population which implies an average daily increase of over 207 thousand
people). So now you know the answer!

Also, let us try and write a program to do the above calculations. A program to
do the calculation is obviously going to be a bit of overkill. Why do all the extra
work when we already know the answer? Small steps are needed to get to higher
places. So let’s indulge and see how you would write a Python program to do
this. Below, we give you one version:

Chapter 3

44

#File: worldPop.py
Purpose:
Estimate the world population growth in a year and
also per day.
Given that on January 1, 2008 the world's population was
estimated at 6,650,000,000 and the estimated growth is
at the rate of +1.14%

def main():
 population = 6650000000
 growthRate = 1.14/100.0

 growthInOneYear = population * growthRate
 growthInADay = growthInOneYear / 365

 print "World population on January 1, 2008 is", population
 print "By Jan. 1, 2009, it will grow by", growthInOneYear
 print "An average daily increase of", growthInADay

main()

The program follows the same structure and conventions we discussed above. In
this program, we are not using any libraries (we do not need any). We have
defined variables with names population, and growthRate to designate the
values given in the problem description. We also defined the variables
grothInOneYear and growthInADay and use them to designate the results of
the calculations. First, in the main program we assign the values given, followed
by performing the calculation. Finally, we use the print commands to print out
the result of the computations.

Do This: Start Python, enter the program, and run it (just as you would run your
robot programs) and observe the results. Voila! You are now well on your way to
also learning the basic techniques in computing! In this simple program, we did
not import anything, nor did we feel the need to define any functions. But this
was a trivial program. However, it should serve to convince you that writing
programs to do computation is essentially the same as controlling a robot.

Using Input

The program we wrote above uses specific values of the world's population and
rate of growth. Thus, this program solves only one specific problem for the given
values. What if we wanted to calculate the results for a different growth rate? or
even a different population? What if we wanted to try out the program for
varying quantities of both? Such a program would be much more useful and

Building Robot Brains

45

could be used over and over again. Notice that
the program begins by assigning specific vaues
to the two variables:

 population = 6650000000
 growthRate = 1.14/100.0

One thing you could do is simply modify those
two lines to reflect the different values.
However, typical programs are much more
complicated than this one and it may require a
number of different values for solving a
problem. When programs get larger, it is not a
good idea to modify them for every specific
problem instance but it is desirable to make
them more useful for all problem instances.
One way you can achieve this is by using the
input facilities of Python. All computer
programs typically take some input, do some
computation (or something), and then produce
some output. Python has a simple input
command that can be used to rewrite the
program above as follows:

#File: worldPop.py
Purpose:
Estimate the world population
growth in a year and
also per day.
Given that on January 1, 2008
the world's population was
estimated at 6,650,000,000 and the estimated growth is
at the rate of +1.14%

def main():
 # print out the preamble

 print "This program computes population growth figures."

 # Input the values
 population = input("Enter current world population: ")
 growthRate = input("Enter the growth rate: ")/100.0

 # Compute the results
 growthInOneYear = population * growthRate
 growthInADay = growthInOneYear / 365

The Energy Problem

The root cause of world energy
problems is growing world
population and energy
consumption per capita.

How many people can the
earth support? Most experts
estimate the limit for long-
term sustainability to be
between 4 and 16 billion.

From: Science, Policy & The Pursuit of

Sustainability, Edited by Bent, Orr,and

Baker. Illus. by Shetter. Island Press,

2002.

Chapter 3

46

 # output results
 print "World population today is", population
 print "In one year, it will grow by", growthInOneYear
 print "An average daily increase of", growthInADay

main()

Read the program above carefully. Notice that we have added additional
comments as well as print statements. This improves the overall readability as
well as the interaction of this program. Notice the use of the input statements
above. The basic syntax of input is shown below:

<variable name> = input(<some prompt string>)

That is, the input is a function whose parameter is a string and the value it
returns is the value of the expression that will be entered by the user. When
executed, the computer will print out the prompt and wait for the user to enter a
Python expression. The user can enter whatever expression in response to the
prompt and then hit the RETURN or ENTER key. The expression is then evaluated
by Python and the resulting value is returned by the input function. That value is
then assigned to the variable <variable name>. The statement above uses the
same syntax as the assignment statement described above. Python has made
obtaining input from a user easy by defining input as a function. Now, look at
the use of the input function in the program above. With this modification, we
now have a more general program which can be run again and again. Below, we
show two sample runs:

Notice how you can re-run the program by just typing the name of the
main()function. There are other ways of obtaining input in Python. We will see
those a little later.

Building Robot Brains

47

Robot Brains

Writing programs to control your robot is therefore no different from writing a
program to perform a computation. They both follow the same basic structure.
The only difference is that all robot programs you will write will make use of the
Myro library. There will be several robot programs that will require you to obtain
input from the user (see exercises below). You can then make use of the input
function as described above.

One characteristic that will distinguish robot programs from those that just do
computations is in the amount of time it will take to run a program. Typically, a
program that only performs some computation will terminate as soon as the
computation is completed. However, it will be the case that most of the time your
robot program will require the robot to perform some task over and over again.
Here then, is an interesting question to ask:

Question How much time would it take for a vacuuming robot to vacuum a 16ft
X 12ft room?

Seemingly trivial question but if you think about it a little more, you may reveal
some deeper issues. If the room does not have any obstacles in it (i.e. an empty
room), the robot may plan to vacuum the room by starting from one corner and
then going along the entire length of the long wall, then turning around slightly
away from the wall, and traveling to the other end. In this manner, it will
ultimately reach the other side of the room in a systematic way and then it could
stop when it reaches the last corner. This is similar to the way one would mow a
flat oblong lawn, or even harvest a field of crop, or re-ice an ice hockey rink
using a Zamboni machine. To answer the question posed above all you have to
do is calculate the total distance travelled and the average speed of the vacuum
robot and use the two to compute the estimated time it would take. However,
what if the room has furniture and other objects in it?

You might try and modify the approach for vacuuming outlined above but then
there would be no guarantee that the floor would be completely vacuumed. You
might be tempted to redesign the vacuuming strategy to allow for random
movements and then estimate (based on average speed of the robot) that after
some generous amount of time, you can be assured that the room would be
completely cleaned. It is well known (and we will see this more formally in a
later chapter) that random movements over a long period of time do end up
providing uniform and almost complete coverage. Inherently this also implies
that the same spot may very well end up being vacuumed several times (which is
not necessarily a bad thing!). This is similar to the thinking that a herd of sheep,

Chapter 3

48

if left grazing on a hill, will result, after a period of time, in a nearly uniform
grass height (think of the beautiful hills in Wales).

On the more practical side, iRobot's Roomba robot uses a more advanced
strategy (though it is time based) to ensure that it provides complete coverage. A
more interesting (and important) question one could ask would be:

Question: How does a vacuuming robot know that it is done cleaning the room?

Most robots are programmed to either detect certain terminating situations or are
run based on time. For example, run around for 60 minutes and then stop.
Detecting situations is a little difficult and we will return to that in the next
chapter.

So far, you have programmed very simple robot behaviors. Each behavior which
is defined by a function, when invoked, makes the robot do something for a fixed
amount of time. For example, the yoyo behavior from the last chapter when
invoked as:

>>> yoyo(0.5, 1)

would cause the robot to do something for about 2 seconds (1 second to go
forward and then 1 second to move backward). In general, the time spent
carrying out the yoyo behavior will depend upon the value of the second
parameter supplied to the function. Thus if the invocation was:

>>> yoyo(0.5, 5.5)

the robot would move for a total of 11 seconds. Similarly, the dance behavior
defined in the previous chapter will last a total of six seconds. Thus, the total
behavior of a robot is directly dependent upon the time it would take to execute
all the commands that make up the behavior. Knowing how long a behavior will
take can help in pre-programming the total amount of time the overall behavior
could last. For example, if you wanted the robot to perform the dance moves for
60 seconds, you can repeat the dance behavior ten times. You can do this by
simply issuing the dance command 10 times. But that gets tedious for us to have
to repeat the same commands so many times. Computers are designed to do
repetitious tasks. In fact, repetition is one of the key concepts in computing and
all programming languages, including Python, provide simple ways to specify
repetitions of all kinds.

Building Robot Brains

49

Doing Repetition in Python

If you wanted to repeat the dance behavior 10 times, all you have to do is:

for i in range(10):
 dance()

This is a new statement in Python: the for-statement. It is also called a loop
statement or simply a loop. It is a way of repeating something a fixed number of
times. The basic syntax of a for-loop in Python is:

for <variable> in <sequence>:
 <do something>
 <do something>
 ...

The loop specification begins with the keyword for which is followed by a
<variable> and then the keyword in and a <sequence> followed by a colon
(:). This line sets up the number of times the repetition will be repeated. What
follows is a set of statements, indented (again, indentation is important), that are
called a block that forms the body of the loop (stuff that is repeated).

When executed, the <variable> (which is called a loop index variable) is
assigned successive values in the <sequence> and for each of those values, the
statements in the body of the loop are executed. A <sequence> in Python is a list
of values. Lists are central to Python and we will see several examples of lists
later. For now, look at the dance example above and notice that we have used the
function range(10) to specify the sequence. To see what this function does you
can start IDLE and enter it as an expression:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The result of entering the range(10) is a sequence (a list) of ten numbers 0..9.
Notice how range returns a sequence of values starting from 0 all the way up to,
but including, 10. Thus, the variable i in the loop:

for i in range(10):
 dance()

will take on the values 0 through 9 and for each of those values it will execute
the dance() command.

Chapter 3

50

Do This: Let us try this out on the robot. Modify the robot program from the
start of this chapter to include the dance function and then write a main program
to use the loop above.

File: dance.py
Purpose: A simple dance routine

First import myro and connect to the robot

from myro import *
init()

Define the new functions...

def yoyo(speed, waitTime):
 forward(speed, waitTime)
 backward(speed, waitTime)
 stop()

def wiggle(speed, waitTime):
 motors(-speed, speed)
 wait(waitTime)
 motors(speed, -speed)
 wait(waitTime)
 stop()

def dance():
 yoyo(0.5, 0.5)
 yoyo(0.5, 0.5)
 wiggle(0.5, 1)
 wiggle(0.5, 1)

The main dance program
def main():
 print "Running the dance routine..."

 for danceStep in range(10):
 dance()

 print "...Done"

main()

Notice that we have used danceStep (a more meaningful name than i) to
represent the loop index variable. When you run this program, the robot should
perform the dance routine ten times. Modify the value specified in the range
command to try out some more steps. If you end up specifying a really large
value, remember that for each value of danceStep the robot will do something

IDLE Tip

You can stop a program at any time by
hitting the CTRL-C keys (pronounced as
Control-see). That is, pressing the
CTRL-key and then at the same time
pressing the c-key.

In the case of a robot program this will
also stop the robot.

Building Robot Brains

51

for 6 seconds. Thus, if you specified 100 repetitions, the robot will run for 10
minutes.

In addition to repeating by counting, you can also specify repetition using time.
For example, if you wanted the robot (or the computer) to do something for 30
seconds. You can write the following command to specify a repetition based on
time:

while timeRemaining(10):
 <do something>
 <do something>
 ...

The above commands will be repeated for 10 seconds. Thus, if you wanted the
computer to say “Doh!” for 5 seconds, you can write:

while timeRemaining(5):

 speak("Doh!", 0)

In writing robot programs there will also be times when you just want the robot
to keep doing its behaviors forever! While technically by forever we do mean
eternity in reality what is likely to happen is either it runs out of batteries, or you
decide to stop it (by hitting CTRL-C). The Python command to specify this uses
a different loop statement, called a while-loop that can be written as:

while True:
 <do something>
 <do something>
 ...

True is also a value in Python (along with False) about which we will learn
more a little later. For now, it would suffice for us to say that the above loop is
specifying that the body of the loop be executed forever!

Do This: Modify the dance.py program to use each of the while-loops instead
of the for-loop. In the last case (while TRUE:) remember to use CTRL-C to
stop the repetitions (and the robot).

As we mentioned above, repetition is one of the key concepts in computing. For
example, we can use repetition to predict the world population in ten years by
repeatedly computing the values for each year:

for year in range(10):
 population = population * (1 + growthRate)

Chapter 3

52

That is, repeatedly add the increase in population, based on growth rate, ten
times.

Do This: Modify the worldPop.py program to input the current population,
growth rate, and the number of years to project ahead and compute the resulting
total population. Run your program on several different values (Google: “world

population growth” to get latest numbers). Can you estimate when the world
population will become 9 billion?

Summary

This chapter introduced the basic structure of Python (and robot) programs. We
also learned about names and values in Python. Names can be used to designate
functions and values. The latter are also called variables. Python provides several
different types of values: integers, floating point numbers, strings, and also
boolean values (True and False). Most values have built-in operations (like
addition, subtration, etc.) that perform calculations on them. Also, one can form
sequences of values using lists. Python provides simple built-in facilities for
obtaining input from the user. All of these enable us to write not only robot
programs but also programs that perform any kind of computation. Repetition is
a central and perhaps the most useful concept in computing. In Python you can
specify repetition using either a for-loop or a while-loop. The latter are useful
in writing general robot brain programs. In later chapters, we will learn how to
write more sophisticated robot behaviors.

Myro Review

speak(<something>)

The computer converts the text in <something> to speech and speaks it out.
<something> is also simultaneously printed on the screen. Speech generation is
done synchronously. That is, anything following the speak command is done
only after the entire thing is spoken.

speak(<something>, 0)
The computer converts the text in <something> to speech and speaks it out.
<something> is also simultaneously printed on the screen. Speech generation is
done asynchronously. That is, execution of subsequent commands can be done
prior to the text being spoken.

timeRemaining(<seconds>)

This is used to specify timed repetitions in a while-loop (see below).

Building Robot Brains

53

Python Review

Values
Values in Python can be numbers (integers or floating point numbers) or strings.
Each type of value can be used in an expression by itself or using a combination
of operations defined for that type (for example, +, -, *, /, % for numbers).
Strings are considered sequences of characters (or letters).

Names
A name in Python must begin with either an alphabetic letter (a-z or A-Z) or the
underscore (i.e. _) and can be followed by any sequence of letters, digits, or
underscore letters.

input(<prompt string>)

This function prints out <prompt string> in the IDLE window and waits for the
user to enter a Python expression. The expression is evaluated and its result is
returned as a value of the input function.

from myro import *
initialize("comX")

<any other imports>
<function definitions>
def main():
 <do something>
 <do something>
 ...

main()
This is the basic structure of a robot control program in Python. Without the first
two lines, it is the basic structure of all Python programs.

print <expression1>, <expression2>, ...
Prints out the result of all the expressions on the screen (in the IDLE window).
Zero or more expressions can be specified. When no expression is specified, it
prints out an empty line.

<variable name> = <expression>
This is how Python assigns values to variables. The value generated by
<expression> will become the new value of <variable name>.

Chapter 3

54

range(10)
Generates a sequence, a list, of numbers from 0..9. There are other, more general,
versions of this function. These are shown below.

range(n1, n2)
Generates a list of numbers starting from n1…(n2-1). For example,
range(5, 10) will generate the list of numbers [5, 6, 7, 8, 9].

range(n1, n2, step)
Generates a list of numbers starting from n1…(n2-1) in steps of step. For
example, range(5, 10, 2) will generate the list of numbers [5, 7, 9].

Repetition

for <variable> in <sequence>:
 <do something>
 <do something>
 ...

while timeRemaining(<seconds>):
 <do something>
 <do something>
 ...

while True:
 <do something>
 <do something>
 ...

These are different ways of doing repetition in Python. The first version will
assign <variable> successive values in <sequence> and carry out the body
once for each such value. The second version will carry out the body for
<seconds> amount of time. timeRemaining is a Myro function (see above). The
last version specifies an un-ending repetition.

Exercises

1. Write a Python program to convert a temperature from degrees Celsius to
degrees Fahrenheit. Here is a sample interaction with such a program:

 Enter a temperature in degrees Celsius: 5.0
 That is equivalent to 41.0 degrees Fahrenheit.

Building Robot Brains

55

The formula to convert a temperature from Celsius to Fahrenheit is: C/5=(F-
32)/9, where C is the temperature in degrees Celsius and F is the temperature in
degrees Fahrenheit.

2. Write a Python program to convert a temperature from degrees Fahrenheit to
degrees Celsius.

3. Write a program to convert a given amount of money in US dollars to an
equivalent amount in Euros. Look up the current exchange rate on the web (see
xe.com, for example).

4. Modify the version of the dance program above that uses a for-loop to use the
following loop:

for danceStep in [1,2,3]:
 dance()

That is, you can actually use a list itself to specify the repetition (and successive
values the loop variable will take). Try it again with the lists [3, 2, 6], or
[3.5, 7.2, 1.45], or [“United”, “States”, “of”, “America”]. Also try
replacing the list above with the string “ABC”. Remember, strings are also
sequences in Python. We will learn more about lists later.

5. Run the world population program (any version from the chapter) and when it
prompts for input, try entering the following and observe the behavior of the
program. Also, given what you have learned in this chapter, try and explain the
resulting behavior.

6. Use the values 9000000000, and 1.42 as input values as above. Except, when
it asks for various values, enter them in any order. What happens?

7. Using the same values as above, instead of entering the value, say
9000000000, enter 6000000000+3000000000, or 450000000*2, etc. Do you
notice any differences in output?

8. For any of the values to be input, replace them with a string. For instance enter
"Al Gore" when it prompts you for a number. What happens?

9. Rewrite your solution to Exercise 4 from the previous chapter to use the
program structure described above.

Chapter 3

56

10. You were introduced to the rules of naming in Python. You may have noticed
that we have made extensive use of mixed case in naming some entities. For
example, waitTime. There are several naming conventions used by programmers
and that has led to an interesting culture in of itself. Look up the phrase
CamelCase controversy in your favorite search engine to learn about naming
conventions. For an interesting article on this, see The Semicolon Wars
(www.americanscientist.org/issues/pub/the-semicolon-wars).

11. Experiment with the speak function introduced in this chapter. Try giving it
a number to speak (try both integers and floating point numbers). What is the
largest integer value that it can speak? What happens when this limit is
exceeded? Try to give the speak function a list of numbers, or strings, or both.

12. Write a Python program that sings the ABC song: ABCD…XYZ. Now I know
my ABC’s. Next time won’t you sing with me?

Building Robot Brains

57

	Chapter3-H
	Chapter3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (GRACoL2006_Coated1v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (GRACoL2006_Coated1v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Lulu'] Use these settings to create Adobe PDF documents best suited for Lulu's printing. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (GRACoL2006_Coated1v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (GRACoL2006_Coated1v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (GRACoL2006_Coated1v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Lulu'] Use these settings to create Adobe PDF documents best suited for Lulu's printing. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (GRACoL2006_Coated1v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

