
Using Glenn, the IBM Opteron 1350
Compilers

October 19-20, 2010



Table of  Contents

Compilers available on Glenn/BALE
Introduction to compiling using GNU
MPI compiler wrappers
Libraries
Debuggers
Material in this class can also be found at
http://www.osc.edu/supercomputing/software/apps/pgi.shtml
http://www.osc.edu/supercomputing/software/apps/intel_compile.shtml

2

http://www.osc.edu/supercomputing/software/apps/pgi.shtml�
http://www.osc.edu/supercomputing/software/apps/intel_compile.shtml�


Retrieve Workshop Problems

Retrieve examples/exercises:

>> svn checkout  http://svn.osc.edu/repos/softdevtools/trunk/Compiling

More on SVN tomorrow.  You may follow along with the Examples during the 
lecture.  Time will be provided to complete the exercises later.

3

http://svn.osc.edu/repos/softdevtools/trunk/Compiling�


Compiling

Compilers at OSC
Myriad of compilers in use
On OSC HPC machines

gcc, g++ - the Gnu C compiler 
ifort, icc - Intel compilers
mpicc, mpif90 - compiling MPI programs

Use gcc to illustrate compiling concepts
Compilers do the same thing
Some arguments differ in syntax

-O3 (gcc) 
-fast (ifort)

Good compiling practices enhance software development
Main interests
Programs that run
And run fast
Forego the usual software engineering arguments
Good and bad practices

4



5
5

GNU Compilers
Compiler suite from the Free Software Foundation
Freely available open source compiler system 
C (gcc)
C++ (g++)
Fortran 77/90 (g77/gfortran)
Installed in /usr/bin and are on all users’ $PATH
Quite good compilers in terms of standards conformance
Primarily used in Makefiles for open source software builds
Do not generate as fast code as other compilers – not 
recommended for high performance scientific code



Portland Group Compilers

Available on Glenn and BALE clusters

Better performance for AMD Opteron
processors

Complete development environments
C (pgcc)
C++ (pgCC)
Fortran 77 (pgf77)
Fortran 90 (pgf90)
High Performance Fortran (pghpf)

6



7

Portland Group Compilers

Includes a debugger (pgdbg) and a profiler (pgprof)

Complete manuals can be found at  
http://www.pgroup.com/resources/docs.htm



8

Portland Group Compilers

Load the PGI compilers into your environment using the module command:
module load pgi

The pgi module is loaded into each user’s environment by default

Current default versions: 9.0-4 (glenn), 7.1-5 (BALE)
Other versions available:  through 10.5 (glenn), 9.0-1 (BALE)
module switch pgi pgi-10.5



9

Portland Group Compilers
Compiler binaries (executables)

pgf77 (Fortran 77)
pgf90 (Fortran 90)
pgcc (C)
pgCC (C++)



10

Portland Group Compilers

Always use man pages when uncertain!
General options

-c (compile only, do not link; produces object file with .o suffix) 
-DMACRO[=value] (defines preprocessor macro MACRO with optional 
value; default value is 1)
-g (generate symbols for debugging; disables optimization)
-I/dir/name (add /dir/name to the list of directories to be searched for 
#included files)
-lname (add library libname.{a|so} to the list of libraries to be linked)
-L/dir/name (add /dir/name to the list of directories to be searched for 
library files)
-o outfile (name executable file outfile; default is a.out)
-UMACRO (removes definition of MACRO from preprocessor)



Portland Group Compilers

Optimization options
-fast (“best” optimization) – on Glenn, equivalent to:

-O2 -Munroll=c:1 -Mnoframe -Mlre -Mvect=sse
-Mscalarsse -Mcache_align -Mflushz

-O0 (no optimization)
-O1 (light optimization; default)
-O2 (heavy optimization, same as -O)
-O3 (aggressive optimization)
-Munroll (enables loop unrolling)
-Minline (controls function inlining)
-Mvect=cachesize:numbytes (sets assumed L2 cache size to 
numbytes bytes)
-Mconcur (enables automatic parallelization of loops)
-mp (enables support for OpenMP and SGI-style PCF pragmas for 
parallelization)

11



12

Portland Group Compilers

C Options
-Xa (enforces strict ANSI C compliance)
-Xc (enforces loose ANSI C compliance)
-Xs (enforces strict K&Rv1 C compliance)
-Xt (enforces loose K&Rv1 C compliance)
Recommended flags:

-Xa -fast



13

Portland Group Compilers
C++ Options

-A (enforces strict ANSI C++ compliance)
-exceptions (enables ANSI C++ exceptions)
--prelink_objects (enables support for template libraries within 
template libraries)
Recommended flags

-A -fast --prelink-objects



14

Portland Group Compilers
F77/F90 Options
-byteswapio (uses byte-swapping with unformatted I/O; compatible with 
Sun and SGI systems)
-i4 (assumes 4-byte INTEGERs; default)
-i8 (assumes 8-byte INTEGERs)
-r4 (interpret DOUBLE PRECISION variables as REAL)
-r8 (Interpret REAL variables as DOUBLE PRECISION)
Recommended flags: 

-fast



15
15

Intel Compilers
Better performance than GNU (excellent performance)
Includes support for:
C (icc)
C++ (icpc)
Fortran 77 and 90 (ifort)
Includes a debugger and a profiler
Debug with idb
Profile with gprof
Vendor documentation can be found here:

http://www.osc.edu/supercomputing/manuals/



16
16

Intel Compilers
Latest version:

glenn: 11.1.056
BALE: 10.0.023

module load intel-compilers-11.1
intel-compilers-11.1 points to the 11.1.056 software
Compiler binaries (executables)
ifort (Fortran 77)
ifort (Fortran 90)
icc (C)
icpc (C++)



17
17

Intel Compilers
General Options

-c (compile only; do not link)
-DMACRO[=value] (defines preprocessor macro MACRO with 
optional value; default value is 1)
-g (generate symbols for debugging; disables optimization)
-I/dir/name (add /dir/name to the list of directories to be 
searched for #included files)
-lname (add library libname.{a|so} to the list of libraries 
to be linked)
-L/dir/name (add /dir/name to the list of directories to be 
searched for library files)
-o outfile (name resulting output file outfile; default is 
a.out)
-UMACRO (removes definition of MACRO from preprocessor)



18
18

Intel Compilers
Optimization Options

-fast (“good” optimization, can cause numerical problems) – on 
Glenn, equivalent to:

-O3 –ipo -static
-O0 (no optimization)
-O1 (light optimization; default)
-O2 (heavy optimization)
-O3 (aggressive optimization, may change numerical results)
-ipo (enable interprocedural optimizations between files)
-funroll-loops (enables loop unrolling)
-parallel (enables auto-parallelizer to generate multi-threaded 
code for safe loops)
-openmp (enables parallelization using OpenMP directives)



19
19

Intel Compilers
C/C++ Options

-strict_ansi (enforces strict ANSI C/C++ 
compliance)
-ansi (enforces loose ANSI C/C++ compliance)
-Wall (enable all warnings)
Recommended flags: -O2 -ansi



20
20

Intel Compilers
Fortran 77, Fortran 90 Options

-convert bigendian (uses unformatted I/O compatible with Sun and SGI 
systems)
-convert cray (uses unformatted I/O compatible with Cray systems)
-i8 (makes 8-byte INTEGERs the default)
-module /dir/name (adds /dir/name to the list of directories searched 
for F90 modules)
-r8 (makes 8-byte REALs the default)
-warn (enables all warning messages)
-warn nousage (suppresses warnings about questionable programming 
practices)
Recommended flags:  -O2



21
21

Transitioning From GNU to Intel/PGI
Makefiles that use GNU compilers can be modified to use Intel or PGI compilers:
Generally the PGI compilers are more likely to work with an existing GNU 
Makefile
Be careful with optimization flags

Start with little or no optimization
Verify numerical correctness (some optimization techniques can affect 
numerical stability)
Increase optimization



Compiling – Examples using GNU

Simple Compile
Small C program

Minimal single file compile
gcc hello.c
Produces executable a.out
Execute program with command ./a.out
If $PATH includes ./, may type a.out
Executable file should have ‘x’ set in permissions

“./a.out: Permission denied.”
8 -rwxr-xr-x    1 pete G-0541       5144 Feb 24 05:18 a.out
chmod a+x a.out

22

hello.c:

#include <stdio.h> 
int main (void) { 

printf ("Hello, world!\n"); 
return 0; 

} 



Compiling

Simple Compile
Direct executable name to alternate file name
gcc hello.c –o hello
Execute with command ./hello
Most compilers recognize the ‘-o’ option
Second simple program

Try to compile and execute?

We will revisit this later
The need for feedback during the compile

23

duh.c:

#include <stdio.h> 
int main (void) { 

printf ("Two plus two is %f\n", 4);
return 0;

}

>> gcc duh.c –o duh
>> ./duh
Two plus two is -0.139606
>> [Truly, DOH!??]



Compiling

Compiling Multiple Source Files
Having all the source in a single file is limiting 
As the file grows

compilation time tends to grow
for each little change, the whole program has to be re-compiled 

Impossible that several people will work on the same project together in this manner
Managing your code becomes harder
Split the source code into multiple files
each containing a set of closely-related functions
Use a single command line to compile all the files

All the source files will be recompiled 
Even those files not edited

24

gcc -g -o imgdither make_pal.c convert.c io_image.c img_dither.c



Compiling

Compiling Multiple Source Files
Alternate method
Divide the compile into two phases
Compiling

Compile object files for each source

-c flag indicates just compile the object file
More flexible
Unedited files need not be recompiled

Linking 
Link all object files into one executable

This will be more efficient when discussing ‘make’ and Makefiles

25

gcc –c make_pal.c 
gcc –c convert.c 
gcc –c io_image.c
gcc –c img_dither.c

gcc make_pal.o convert.o io_image.o img_dither.o –o imgdither



Compiling

Compiling production line
Objective is to create an executable file
Specific to the architecture of the machine
Compiling is multi-stage process
Refer to gcc
Front ends: gcc or g++
Assembler: as
Linker: ld
Don’t need to use each individually
The compilation step with gcc uses all
The simple hello.c example goes through all the steps

Uses headers
Uses external libraries

Use the –v flag during compilation < the output is on the next slide >
The stages are:
Preprocessing (macro expansion)
Compilation (creating assembler language code)
Assembling (create machine code)
Linking (create final binary executable)

26



Compiling

Compiling production line

27

pete@gromit: ~/ >> gcc -v hello.c

Using built-in specs.
Target: i386-redhat-linux
Configured with: ../configure --prefix=/usr --mandir=/usr/share/man --infodir=/usr/share/info 
--enable-shared --enable-threads=posix --enable-checking=release --with-system-zlib --enable-__cxa_atexit
--disable-libunwind-exceptions --enable-libgcj-multifile --enable-languages=c,c++,objc,obj-c++,java,fortran,ada
--enable-java-awt=gtk --disable-dssi --enable-plugin --with-java-home=/usr/lib/jvm/java-1.4.2-gcj-1.4.2.0/jre
--with-cpu=generic --host=i386-redhat-linux

Thread model: posix
gcc version 4.1.1 20070105 (Red Hat 4.1.1-51)
/usr/libexec/gcc/i386-redhat-linux/4.1.1/cc1 -quiet -v hello.c -quiet -dumpbase hello.c -mtune=generic 
-auxbase hello -version -o /tmp/ccbDwhXh.s

ignoring nonexistent directory "/usr/lib/gcc/i386-redhat-linux/4.1.1/../../../../i386-redhat-linux/include"
#include "..." search starts here:
#include <...> search starts here:
/usr/local/include
/usr/lib/gcc/i386-redhat-linux/4.1.1/include
/usr/include
End of search list.
GNU C version 4.1.1 20070105 (Red Hat 4.1.1-51) (i386-redhat-linux)

compiled by GNU C version 4.1.1 20070105 (Red Hat 4.1.1-51).
GGC heuristics: --param ggc-min-expand=98 --param ggc-min-heapsize=129117
Compiler executable checksum: 98782966c6e2b1983484cce1a314172a
as -V -Qy -o /tmp/ccr9lLjm.o /tmp/ccbDwhXh.s

GNU assembler version 2.17.50.0.6-2.fc6 (i386-redhat-linux) using BFD version 2.17.50.0.6-2.fc6 20061020
/usr/libexec/gcc/i386-redhat-linux/4.1.1/collect2 --eh-frame-hdr -m elf_i386 --hash-style=gnu -dynamic-linker 
/lib/ld-linux.so.2 /usr/lib/gcc/i386-redhat-linux/4.1.1/../../../crt1.o /usr/lib/gcc/i386-redhat-linux/4.1.1/../../../crti.o
/usr/lib/gcc/i386-redhat-linux/4.1.1/crtbegin.o -L/usr/lib/gcc/i386-redhat-linux/4.1.1 -L/usr/lib/gcc/i386-redhat-linux/4.1.1 
-L/usr/lib/gcc/i386-redhat-linux/4.1.1/../../.. /tmp/ccr9lLjm.o -lgcc --as-needed -lgcc_s --no-as-needed -lc -lgcc --as-needed 
-lgcc_s --no-as-needed /usr/lib/gcc/i386-redhat-linux/4.1.1/crtend.o /usr/lib/gcc/i386-redhat-linux/4.1.1/../../../crtn.o
pete@gromit: ~/ >> 



Compiling

Compiling production line
Preprocessing
Source code

Expand macros
Included headers 

Usually files not saved unless the -save-temps option used
.i for C code 
.ii for C++ code 

Compiling
Compilation of preprocessed source code to assembly language
For a specific processor

Use the command-line option -S 
Convert the preprocessed C source code to assembly language : 
Assembly  language is stored in the file hello.s: 

28

>> gcc -Wall -S hello.i



Compiling

Compiling production line
Compiling
Assembler file for an Intel 386 processor on Fedora Core 6

29

hello.s:
.file "hello.c"
.section .rodata

.LC0:
.string "Hello, World!."
.text

.globl main
.type main, @function

main:
leal 4(%esp), %ecx
andl $-16, %esp
pushl -4(%ecx)
pushl %ebp
movl %esp, %ebp
pushl %ecx
subl $4, %esp
movl $.LC0, (%esp)
call puts
movl $0, %eax
addl $4, %esp
popl %ecx
popl %ebp
leal -4(%ecx), %esp
ret
.size main, .-main
.ident "GCC: (GNU) 4.1.1 20070105 (Red Hat 

4.1.1-51)"
.section .note.GNU-stack,"",@progbits



Compiling

Compiling production line
Assembler
Assembler converts assembly language into machine code
Generates object file 
Calls to external functions 

addresses of the external functions are left undefined
Filled in later by the linker. 
Assembler invoked with the –o flag in the command line

hello.o has the machine instruction for the C code in hello.c
Undefined reference to puts

Linking
Final stage of compilation
Linking of object files to create an executable 
Executable requires many external functions 

From system and C run-time (crt) libraries
Internal link command, ln, is complicated

30

ld --eh-frame-hdr -m elf_i386 --hash-style=gnu -dynamic-linker 
/lib/ld-linux.so.2 /usr/lib/gcc/i386-redhat-linux/4.1.1/../../../crt1.o /usr/lib/gcc/i386-redhat-linux/4.1.1/../../../crti.o 
/usr/lib/gcc/i386-redhat-linux/4.1.1/crtbegin.o -L/usr/lib/gcc/i386-redhat-linux/4.1.1 -L/usr/lib/gcc/i386-redhat-linux/4.1.1 
-L/usr/lib/gcc/i386-redhat-linux/4.1.1/../../.. /tmp/ccr9lLjm.o -lgcc --as-needed -lgcc_s --no-as-needed -lc -lgcc --as-needed 
-lgcc_s --no-as-needed /usr/lib/gcc/i386-redhat-linux/4.1.1/crtend.o /usr/lib/gcc/i386-redhat-linux/4.1.1/../../../crtn.o

>> as hello.s –o  hello.o



Compiling

Compiling production line
Linker
Transparent to the process, fortunately
Links the object file

To the C standard library 
To any other libraries as directed

Using –L in command line
Environment variable : $LD_LIBRARY_PATH 

Produces the executable file a.out

31



Compiling

Using Options For Compiling 
Control compiling features
Search paths used for locating libraries and include files
Use of additional warnings and diagnostics
Preprocessor macros 
C language dialects. 
Some desirable options are not default
For specific options use the man
For our purposes ‘man gcc’
Information overload
But very specific to the architecture 
Eventually programmers must refer to the options
Commonly-used GCC compiler options
Debugging with -g

Builds symbol table of the code
Names of variables
Line numbers of commands and variables

File size differ appreciably
gcc –g main.c

8 -rwxr-xr-x    1 pete G-0541       6356 Feb 24 05:44 a.out
gcc main.c

8 -rwxr-xr-x    1 pete G-0541       5144 Feb 24 05:45 a.out
Look at this in greater detail in the debugging section 

-c and -o
We have seen these in action

32



Compiling

Using Options For Compiling – Warnings
-W(exp) : Commonly-used GCC compiler options
Warnings with -Wall

Essential potpourri of individual warning flags
Should always be included in the compile 
Can  catch many errors during compilation
Full list of options included in man gcc
Revisit our previous duh.c problem

Problem printing correct value
-Wall includes the warning –Wformat

Checks for incorrect use of format strings 
In functions such as printf and scanf
format specifier does not agree with the variable type

All listed in man gcc
Will say something like (Included in –Wall)

33

>> gcc duh.c
>> ./a.out
Two plus two is -0.703465.
>> 

>> gcc -Wall duh.c
duh.c: In function 'main':
duh.c:4: warning: format '%f' expects type 'double', but argument 2 has type 'int‘
>> ./a.out
Two plus two is 4.
>>



Compiling

Using Options For Compiling - Warnings
Other warning options not included in -Wall 
Source code may be technically valid 
But may cause problems 
Not included in –Wall

Flag only possible problems
-W

General option similar to -Wall 
Warns about common programming errors
Functions which can return without a value 

"falling off the end of the function”
Comparisons between signed and unsigned values

testing if an unsigned integer is negative 

34

int testInt (unsigned int x) { 
if (x < 0) return 0; 
else return 1; 

} 

>> gcc -W -c testInt.c
testInt.c: In function 'testInt':
testInt.c:2: warning: comparison of unsigned expression < 0 is always false
>>



Compiling

Using Options For Compiling - Optimizing
Optimizing the code
Want the program to run faster or take less space
Replace the ‘-g’ flag with the ‘-O’ argument 
Compilation takes longer

Compiler applies various optimization algorithms
Optimization is designed to be conservative

Ensures code will function the same as without optimization
Can ramp up the optimization

Add number arguments to ‘-Ox’: ‘-O2’, ‘-O3’, ‘-O4’
The higher the number the greater the optimization and slower the compiler

Optimization can alter code
Chances are higher that an improper optimization will actually alter our code
Some of them tend to be non-conservative, complex, and contain bugs 

35



Compiling

Using Options For Compiling - Optimizing
Common in-source optimization
References programming practices
Eliminate subexpressions

Reduce the number of operators

Pre-calculate a common expression

Reduces the size of the code and increases the speed
Function inlining

Overhead calling functions

36

X = (1 – t 2)  +  3*(1 – t 2) 3  – 2*(1 – t 2) 5;

double square (double x) { 
return x * x; 

} 

for (i=0; i<infinity; i++) {
sum += square(i + 3.14);

} 

m = 1 – t 2;

X = (m) +  3 * (m) 3 – 2 * (m) 5;

for (i=0; i<infinity; i++) 
{ 

double t = (i+ 3.14);
sum += t * t;

} 



Compiling

Using Options For Compiling - Optimizing
Control compilation-time and compiler memory usage
Tradeoffs between speed and space for the resulting executable
GCC provides a range of general optimization levels

Numbered from 0—3
Individual options for specific types 

An optimization level is given in the command line options
–OLEVEL, LEVEL is 0-3

-O0 or no -O option (default) 
Does not perform any optimization 
Compiles the source code in the most straightforward way possible

Each command converted directly to the corresponding instructions
Best option to use when debugging

-O1 or -O 
Most common form of optimization 
Executables should be smaller and faster than with -O0
Expensive optimizations are not used at this level. 

Instruction scheduling
Takes less time than compiling with -O0

Reduced amounts of data not processed after simple optimizations. 

37



Compiling

Using Options For Compiling - Optimizing
-O2 
Turns on further optimizations

Additional to those used by -O1
Includes instruction scheduling

No optimizations that require any speed-space tradeoffs are used
executable should not increase in size

Takes longer to compile and requires more memory than with -O1
Best choice 

Provides maximum optimization without increasing the executable size
Default optimization level for GNU 
-O3 
More expensive optimizations

Function inlining
As well as all the optimizations of the levels -O2 and -O1

May increase the speed executable
Could also increase its size
May make a program slower and create spurious results 
Not recommended 

38



Compiling

Using Options For Compiling - Optimizing
-funroll-loops 
Turns on loop-unrolling
Independent of other optimization options
Will increase the size of an executable
Results unclear, must be considered case-by-case
-Os 
Reduces the size of an executable 
Produces the smallest possible executable

For systems constrained by memory or disk space
Possible that smaller executable runs faster 

Better cache usage. 
Cost of optimization 
Greater complexity in debugging
Increased time and memory requirements during compilation
Best rule of thumb

Use -O0 for debugging
Use -O2 for production 

39



Compiling

Using Options For Compiling - Optimizing
Optimization and compiler warnings
Some compiler warnings do not appear without optimization
Data flow analysis

Compiler examines the use of all variables and initial values
Basis of optimization strategies

Compiler can detect the use of un-initialized variables
Create a file with the following code:
-Wuninitialized (included in -Wall) 

Warns about un-initialized variables
Only works with optimization turned on

Try the two compile commands 

40

checkex.c:
float check (float x) { 

float s; 
if (x == 0.0) 

s = 0.0; 
else if (x != 0.0) 

s = 1/x; 
return s; 

} 

gcc –Wall –c checkex.c

gcc –Wall –O2 –c checkex.c



Compiling

Using Options For Compiling – Libraries
Precompiled object files which can be linked into programs
Most commonly used in the C library
sqrt, fabs functions in the C math library
Two flavors
static libraries

Have the extension .a
May be referenced directly in the compile command

shared libraries
Have the extension .so
More compatible with code reuse
Linked in at runtime 

Library locations
Specify specific libraries in compile command

-l(name) – [lower case el](name)
Example: libm.a would be –lm

Take off the ‘lib’ and the ‘.a’

gcc –g –Wall –o myfunc myfunc.c –L/home/user/libs -lmylibs
Compiler will look for a library libmylibs.a or libmylibs.so
In the directory /home/user/libs

41

gcc -Wall calc.c /usr/lib/libm.a -o calc



Compiling

Using Options For Compiling – Libraries
Library locations
As with header files, libraries may reside outside the system install

Compilers look in /usr/lib and /usr/local/lib by default
-Ldir in the compile command

May be repeated 

$LD_LIBRARY_PATH
The command module user interface to Modules package
Provides for dynamic modification of user environment

42

[opt-login01] ~ :: module list
Currently Loaded Modulefiles:
1) pgi 4) torque                 

7) modules
2) intel-compilers-10.0   5) mpi
3) moab 6) mpirun-compat

[opt-login01] ~ :: module show  intel-compilers-10.0
-------------------------------------------------------------------
/usr/local/share/modulefiles/intel-compilers-10.0:

module-whatis loads the Intel C/C++/F95 compilers 
prepend-path     LM_LICENSE_FILE 28519@license2.osc.edu 
prepend-path     MANPATH /usr/local/intel-10.0.023/man 
prepend-path     PATH /usr/local/intel-10.0.023/bin 
append-path      LD_LIBRARY_PATH /usr/local/intel-10.0.023/lib 
set-alias        efc ifort
set-alias        ecc icc
-------------------------------------------------------------------
[opt-login01] ~ :: 

gcc –L. –L/home/me/libs …



Compiling

Using Options For Compiling – Include Files
Include files contain information for a program
Variable declaration and initialization
Function declaration and prototyping
<stdio.h>

Directed to look in standard system default locations
/usr/include, /usr/local/include

“/home/me/include/myown.h”
Look in a specified directory

Include locations for header files
Header files in your source code

Most system header files in /usr/include and /usr/local/include
-Idir – that’s [cap i]dir

Also repeatable
Need to access other directories

Direct the compiler to look into /home/me/includes for referenced headers
Use the <> in the source file

43

gcc –g –Wall –I/home/me/includes



Compiling

Using Options For Compiling – Include Files
Include locations for header files
Environment variables

C_INCLUDE_PATH 
CPLUS_INCLUDE_PATH

Using Options For Compiling – Search Paths
Order of search

1. Command-line options –I and –L, left to right
2. Environment variables
3. Default system directories

44



Compiling

Using Options For Compiling – Preprocessing
Alter execution of program 
Using #ifdef

Preprocessor includes code
#endif terminates  block

-Dname defines a macro
Part of the command line 

45

#include <stdio.h> 
int main(void) { 
#ifdef DEBUG

printf (“This might be interesting.\n"); 
#endif 

printf (“This is running mode.\n"); 
return 0; 

} 

gcc –DDEBUG …



Compiling

Making Static Libraries
Additional commands
ar GNU program which creates, extracts and modifies from archives

An archive is single file holding a collection of other files
ranlib generates an index to the contents of an archive and stores it in the archive.

In our image processing example we wish to create a static library for the files make_pal.o
convert.o io_image.o
gcc –c convert.c
gcc –c make_pal.c
gcc –c io_image.c
ar rc libimgdith.a make_pal.o convert.o io_image.o
ranlib libimgdith.a

(nm libimgdith.a)
gcc –c img_dither.c
gcc img_dither.o –L. –limgdith –o imgdither

46



Compiling

Making Static Libraries : Creating
Often code may be collected and used over and over again
This involves compiling the reusable code into a static library
First
Create source files 
Containing functions that will be used
Library can contain multiple object files 
Compile files into object files
Creating a library

Create a static library 
Rename the “speciallib" portion of the name
Create an index inside the library

copying the library
use the -p option with cp to preserve permissions

47

ar rc speciallib.a objfile1.o objfile2.o objfile3.o

ranlib libmylib.a



Compiling

Making Static Library : Usage
Prototype library function calls 
Do not want implicit declaration errors
When linking to the libraries

Specify where the library can be found
-L. tells gcc to look in the current directory for libmylib.a.

48

gcc -o main -L. -lmylib main.o



Compiling

Making Shared Libraries : Creating
Creating shared or dynamic libraries is simple also. 
Using the previous example, to create a shared library: 

-fPIC option 
tells compiler to create Position Independent Code 

create libraries using relative addresses 
no absolute addresses because these libraries can be loaded multiple times

-shared option 
specifies architecture-dependent shared library is being created 
not all platforms support this flag. 
Compile the actual program 
using the libraries:

Same as creating a static library
none of the actual library code is inserted into the executable

49

>> gcc -o foo -L. -lmylib foo.o

>> gcc -fPIC -c objfile1.c
>> gcc -fPIC -c objfile2.c
>> gcc -fPIC -c objfile3.c
>> gcc -shared -o libmylib.so objfile1.o objfile2.o objfile3.o



Compiling

Making Shared Libraries : Usage
Programs using static libraries
Can run on its own
Shared libraries dynamically access libraries at run-time
program needs to know where the shared library is stored
The advantage of using Dynamic Libraries 

The executable is much smaller 
No  need to compile it into the executable at compile time

Programs working with dynamic libraries use LD_LIBRARY_PATH environment variable 
Make sure to append the desired path to the variable

Not  overwrite it – erases all the system settings

50

>> echo $LD_LIBRARY_PATH 
/usr/lib:/local/lib:/local/peteFiles/vtk5.0/lib:/local/peteFiles/AVS7.0/express/lib/linux
>> setenv LD_LIBRARY_PATH /home/pete/libs:${LD_LIBRARY_PATH}
>> echo $LD_LIBRARY_PATH
/home/pete/libs:/usr/lib:/local/lib:/local/peteFiles/vtk5.0/lib:/local/peteFiles/AVS7.0/express/lib/linux

Mistake:
setenv LD_LIBRARY_PATH /home/pete/libs



51
51

Parallel Program Development
MPI Compiler Wrappers
The MVAPICH implementation of MPI for Infiniband

Uses a set of compiler scripts 
Need not remember path names for libraries and include files
MPI compilation scripts support the following languages

C (mpicc – wrapper for pgcc)
C++ (mpiCC – wrapper for pgCC)
Fortran 77 (mpif77 – wrapper for pgf77)
Fortran 90 (mpif90 – wrapper for pgf90)

Accept the same arguments as the compiler they wrap
mpicc accepts the same arguments as pgcc
mpif77 accepts the same arguments as pgf77
See manual pages for details on argument options



52
52

Parallel Program Development
MPI Compiler Wrappers

Default compiler suite is PGI
To use Intel compilers:

module switch mpi mvapich-1.1-intel



53
53

Parallel Program Development
MPI Compiler Wrappers Break 
Occasionally, quoting of compiler arguments:

will not work with the MPI compiler wrappers (which are, after all, only shell 
scripts)
in these cases, you can use the Portland Group compilers directly:

Compile with
$MPI_CFLAGS (C)
$MPI_CXXFLAGS (C++)
$MPI_FFLAGS (F77)
$MPI_F90FLAGS (F90)

Link with $MPI_LIBS



54
54

Parallel Program Development

•MPI Compiler Wrappers Break
•Example

•Example

[opt-login1] pgcc -O2 \
$MPI_CFLAGS -DVERSION=′ ″ v0.2 build 1/21/00″ ′ -c vbcast.c

[opt-login1] pgf90 -O2 \
$MPI_FFLAGS -DSIZE=‘128’ cp3.F -o cp3-128 $MPI_LIBS



55

Program Development Tools and Libraries

Libraries
Several Fortran numerical libraries installed

Can be used in conjunction with the compiler being used
AMD Core Math Library

Includes BLAS, LAPACK, FFT
Link with $ACML
Requires loading the module specific to the compiler

Type the command ‘module show acml-xxx’ for specific settings

[opt-login1] module avail acml
…
acml-gfortran acml-gnu acml-intel acml-pgi
…
[opt-login1] module load acml-pgi



56
56

Debuggers

gdb command line symbolic debugger

Intel compilers include a debugger, idb

Portland Group compilers include a debugger, pgdbg

totalview parallel debugger

module load totalview



57
57

Debuggers
totalview within a batch job

Designed for parallel programs 

MPI, OpenMP, or pthreads

MPI jobs run only through the PBS batch system

PBS allows for interactive batch jobs
Used to run interactive programs
Within the framework of a batch job
qsub -I



58
58

Debuggers
totalview example
Specify on the command line

Obtain an interactive shell 
On one of the compute nodes 
Has all the limits of your batch request
Run mpiexec with the -tv option

[opt-login1.osc.edu] > qsub -I -l nodes=2:ppn=4  \
-l walltime=1:00:00 -j oe -N totalview -S /bin/ksh \
–v DISPLAY

[opt0838] > cd $PBS_O_WORKDIR
[opt0838] > module load totalview
[opt0838] > mpiexec –tv a.out



59
59

Debuggers
Totalview basic look 
Process window

Pull-down menus
Control buttons
4 panes

Interact with totalview via mouse
Set breakpoints 
Examine variables 
“step” button

A good tutorial for totalview can be found at 
https://computing.llnl.gov/tutorials/totalview/



Reference

1. http://www.network-theory.co.uk/docs/gccintro/index.html, 
good online reference

60

http://www.network-theory.co.uk/docs/gccintro/index.html�


Compiling Exercises

Retrieve the copies of the examples and exercises from Subversion repository
1. svn checkout  http://svn.osc.edu/repos/softdevtools/trunk/Compiling 
2. Each directory has a ‘README’ and/or ‘HTML’ file that will direct you through the 

exercise.

61


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61

