
Using Glenn—the IBM Opteron 1350
Introduction to UNIX
October 19, 2010

2
EMPOWER. PARTNER. LEAD.

Functions - Scope of Activity

Supercomputing. Computation, software, storage, and
support services empower Ohio’s scientists, engineers,
faculty, students, businesses and other clients.

Networking. Ohio’s universities, colleges, K-12 and state
government connect to the network. OSC also provides
engineering services, video conferencing, and support
through a 24x7 service desk.

Research. Lead science and engineering projects, assist
researchers with custom needs, partner with regional,
national, and international researchers in groundbreaking
initiatives, and develop new tools.

Education. The Ralph Regula School of Computational
Science delivers computational science training to students
and companies across Ohio.

3
EMPOWER. PARTNER. LEAD.

Contents
• Introduction

• Useful Concepts

• Commands

• Files and Directories, Part I

• Screen Editors

• Files and Directories, Part II

• UNIX Shell

• Filters and Information Processing

• Selected Sources for Further Enlightenment

4
EMPOWER. PARTNER. LEAD.

Introduction
• Acknowledgments

• Purpose of Course

• What is UNIX?

• Software Uses

• Structure of UNIX

5
EMPOWER. PARTNER. LEAD.

Introduction—Acknowledgments
Jim Giuliani—Lead, Science and Technology

Support Group

(see end of notes for selected references)

6
EMPOWER. PARTNER. LEAD.

Introduction—Purpose of Course
• Introduce the basics of UNIX

• Introduce the basics of UNIX screen editors

• Provide hands-on practice

7
EMPOWER. PARTNER. LEAD.

Introduction—What Is UNIX?
• Operating system and attendant application

programs

• Available on virtually all machines in one form or
another

• Long history

• Adapted to new platforms

• Based on C programming language

8
EMPOWER. PARTNER. LEAD.

Introduction—Software Uses
• Operating

– For the computer
– Liaison between computer and user

• Applications
– Basic functions

• Electronic filing
• Word processing
• Database maintenance (not in this workshop)
• Electronic mail and networking access (not in this workshop)

– Additional function
• Programming

9
EMPOWER. PARTNER. LEAD.

Introduction—Structure of UNIX
• Kernel—not for average users

– CPU scheduling
– Memory management
– Process management
– Other duties

• Shell
– Interacts between kernel and user
– User invokes commands through shell
– Choices

• Bourne
• Korn
• Cshell
• TCshell
• BASH

10
EMPOWER. PARTNER. LEAD.

Useful Concepts
• Getting Out of Trouble

• Terms and Concepts

11
EMPOWER. PARTNER. LEAD.

Useful Concepts—Getting Out of Trouble
•^ often means press the Control key

simultaneously with another key
•kill: kill a job in the works

•^U: delete a full command line to the prompt

•^u: undo last command

•^s: stop scrolling

•^q: resume scrolling

What happens if you type a word that is not a valid
UNIX command?

12
EMPOWER. PARTNER. LEAD.

Useful Concepts—Terms and Concepts
• Standard input stdin

• Standard output stdout

• Case sensitive
– Note whether you use upper case or lower case
– UNIX commands—usually lower case

•^ control key
– If ^ is part of a command, press the control key and the

second key simultaneously

• <Return> key
– Almost always used to tell system end of command line

13
EMPOWER. PARTNER. LEAD.

Useful Concepts—Terms and Concepts
• Prompt

– A symbol (usually % or $)
– User can change prompt in dot-file
– When cursor is at prompt, user can enter a command

• Permission
– Ability to read, write, or execute a directory or a file by

user, group member, other
– Default permissions when directory/file created
– Can change permissions manually

14
EMPOWER. PARTNER. LEAD.

Commands
• Structure

• Special Features

• First (and Last) Commands

• Exercise 1

• Easy Commands

• Exercise 2

15
EMPOWER. PARTNER. LEAD.

Commands—Structure
command –option argument

•command
– Usually lower case
– What you want to do

•-option
– Sometimes not required
– Enhances output of command; tailors output
– Often can be combined with one or more other options

•argument
– What command will act upon
– Often have more than one argument
– Sometimes not required

16
EMPOWER. PARTNER. LEAD.

Commands—Special Features
• Can combine several commands on one line—separate

with semicolons
• Can create complex commands with redirection signs (|, >,
>>, <, <<)

• Can combine frequently used sequence of commands in a
file and run that file like a command

• Can find information about every available command by
typing at prompt (finish with <Return>)
– man command
– Press q to leave on-line manual

17
EMPOWER. PARTNER. LEAD.

Commands—First (and Last) Commands
• Logging on

– userid
• Assigned by systems administrator
• Probably won’t change
• At OSC, different userid for each project

– Password
• Assigned by systems administrator
• User should change it often for security
• At OSC, password should be between 6 and 8 characters long

– To change password
• Go to URL in account letter you receive
• Keep account letter—if you ever need your password reset, it

will be reset to the default password in the account letter

18
EMPOWER. PARTNER. LEAD.

Commands—First (and Last) Commands
• Connecting to an OSC machine remotely

– Use Secure Shell protocol: at prompt, enter
ssh userid@machine.osc.edu

– Enter password

• Logging off
– At prompt, enter

exit

– May differ from system to system, but usually works

mailto:userid@machine.osc.edu�

19
EMPOWER. PARTNER. LEAD.

Commands—Exercise 1
• Use your OSC userid/password or a workshop

userid/password to log on to the Bale Cluster node
at which you are sitting

• Bring up an ssh client window (usually under
Systems Tools)

• Log on to Glenn
– Machine address is: glenn.osc.edu

• Quick reminder—are you ending every command
with a <Return>? Good job!

20
EMPOWER. PARTNER. LEAD.

Commands—Easy Commands
•date

•cal year or month year

•finger -m, -l, -s

•man command

•man -k keyword

•who

•who am i

21
EMPOWER. PARTNER. LEAD.

Commands—Exercise 2
• At the prompt type: man man
• What do you type to exit an online manual page?

(Pop quiz from a passing reference earlier; do you
remember?)

• Type the easy commands on the previous page,
one at a time (with a <Return> after each
command), and look at the output.

• Type man command for some of the commands
on the previous slide to accustom yourself to using
the online manual and to understand how the
various options change the output.

22
EMPOWER. PARTNER. LEAD.

Commands—Exercise 2
• Type some of the commands with the options from

the online manual pages. Can you combine some
of the options under one hyphen? (The options
can’t be combined if they contradict each other.)

• To answer a question you may have: you can use
the command echo and one of the commands,
such as date, in your shell programs so that you
have an automatic dating system for the resulting
output. This procedure is convenient for multiple
runs of a shell script. Check the command echo in
the online manual pages.

23
EMPOWER. PARTNER. LEAD.

Commands—Exercise 2
• At the prompt, type date

– Study the output

• At the prompt, type cal year_you_were_born

• At the prompt, type who

• At the prompt, choose a userid from the output of who, and
type finger userid

• At the prompt, type man who
– Study the options

• At the prompt, type man finger
– Study the options

24
EMPOWER. PARTNER. LEAD.

Files and Directories, Part I
• Illustrations

• Where Am I?

• First Commands

• Name Hints

• Creating Files

25
EMPOWER. PARTNER. LEAD.

Files and Directories, Part I—Illustrations

file1 file2

dir1

file1 file2

dir2

file1 file2

dir3

root

26
EMPOWER. PARTNER. LEAD.

Files and Directories, Part I—Illustrations

bin etc

adm

bin

include

lib

man

spool

ucb

usr dev

al

charlie

dick

steve

a

barb

dje

dgr

elaine

jimg

leslie

srb

troy

b

brian

dennis

kevin

paul

c

/

27
EMPOWER. PARTNER. LEAD.

Files and Directories, Part I—Where Am I?
•pwd

– Tells you where you are in the file hierarchy
– Important in increasingly complex hierarchy
– Important for moving files
– Important in moving to and from directories of others

• At the prompt, type pwd
– Study the output

28
EMPOWER. PARTNER. LEAD.

Files and Directories, Part I—First Commands
•ls –a –c –l –f –r –s –t directory

– Don’t forget to check man page

•cat [several options] file
– The command cat has several uses

•more [several] file

•less [several] file

•lpr –l [other options] file
– Printing can be indicated in a couple of ways;

system-dependent

29
EMPOWER. PARTNER. LEAD.

Files and Directories, Part I—Name Hints
• Avoid spaces; separate words with dots or

underscores
– my.file

• Begin directory names with upper-case letters
– My.directory

• Avoid special characters
– / \ ‘ “ ; - ? [] () ~ ! $ { } < >

• Make names descriptive

30
EMPOWER. PARTNER. LEAD.

Files and Directories, Part I—Creating Files
•cat command (remember—several uses)

– At prompt type cat > file.name
– Note, after <Return>, no prompt
– Type two or three lines of text, each followed by

<Feturn>
– How do I get prompt back? Type ^d

• At the prompt, type ls
– Do you see your new file?

• How do we see contents?
– At the prompt, type cat file.name
– At the prompt, type more file.name
– At the prompt, type less file.name

31
EMPOWER. PARTNER. LEAD.

Files and Directories, Part I—Creating Files
• Use redirection symbols to redirect output from

command to file—can create file this way
– Example of redirection >

• Usage command > file
• Verify creation ls
• Read contents cat file more file less file

– Practice
• cal > calendar

– What is the command? What is the file.name?
• ls calendar

– Does the file calendar exist?
• cat calendar more calendar less calendar

32
EMPOWER. PARTNER. LEAD.

Files and Directories, Part I—Creating Files
• Practice/object lesson

– At the prompt, type ls
• Do you have a file called calendar?

– At the prompt, type cat calendar (or more or
less)

• What are the contents?
– Now type who > calendar
– At the prompt, type ls

• Do you have a file called calendar?
– Now type cat calendar (or more or less)

• What are the contents?
• What has happened?

33
EMPOWER. PARTNER. LEAD.

Files and Directories, Part I—Creating Files
$ cat > workshop

first line

second line

third line

^d

$ more workshop

$ who > people

$ ls

$ more calendar (or cat or less)

$ more workshop (or cat or less)
$ who > workshop

$ ls

$ more workshop (or cat or less)

$ more people (or cat or less)

34
EMPOWER. PARTNER. LEAD.

Screen Editors
• Cheat Sheet
•emacs

•vi

•pico

35
EMPOWER. PARTNER. LEAD.

Screen Editors—Cheat Sheet
• cat

– Create a file: cat > file.name
– Read an existing file: cat file.name
– Cannot change any line other than current line
– Quit: ^d

• vi
– Create a file/open existing file: vi file.name
– Insert mode: i
– Change to command mode: <ESC>
– Quit/save: ZZ (upper case; make sure you are in command mode)

• emacs
– Create a file/open existing file: emacs file.name
– Save: ^x^s
– Quit: ^x^c

• pico
– Create a file/open existing file: pico file.name
– Quit: ^x
– You will be prompted to save
– Not always on the system

36
EMPOWER. PARTNER. LEAD.

Screen Editors—emacs
• Can use emacs to open a file created with any

other text editor

• Especially useful for writing long code—many
helpful features

– High overhead, though
– Color highlighting for certain codes—advanced usage

• Free to download

• Widely available

• Document has prompts for user—relatively
intuitive

37
EMPOWER. PARTNER. LEAD.

Screen Editors—emacs
• Create/open a file

– emacs file.name
• If file.name exists, will open file
• If file.name doesn’t exist, will create a new file

• Look at the screen after invoking emacs

• Information areas
– Echo area

• Displays certain commands
• Prompts input to a command
• Cursor in echo area—can use any emacs editing tools that work on

one line to change what has been typed
– To abort a command started on echo area: ^g

– Mode line
• Can be ignored for simple text editing on single files

38
EMPOWER. PARTNER. LEAD.

Screen Editors—emacs
• Position cursor

– Use arrow keys if configured
– ^p (up) ^n (down) ^b (left) ^f (right)
– ^a (beginning of line) ^e (end of line)

• Position cursor with numerical arguments
– Precede numerical argument with <ESC>
– Examples

• <ESC>4^p (move up 4 lines)
• <ESC>5^f (move forward to 5th character)
• <ESC>8^n (move down 8 lines

39
EMPOWER. PARTNER. LEAD.

Screen Editors—emacs
• Add text

– Move cursor to correct position, start typing

• Delete text
– ^d (delete character at cursor)
– delete key (delete character before cursor)
– <ESC>d (kill word after cursor)
– ^k (kill from cursor to end of line)
– ^y (yank back a previous kill)

• Concepts
– delete—does not save deleted characters to buffer
– kill—killed characters go to buffer, limited capacity,

deletes oldest kills when new ones added

40
EMPOWER. PARTNER. LEAD.

Screen Editors—emacs
• Undo changes

– ^x u (undo last change)
– ^x^c (leave without saving—prompt appears)
– <ESC>x (restore buffer to original contents)

• Conserve CPU time
– In documents with text already entered, insert a couple

of blank lines and type there
• Prevent screen from having to redraw with addition of every

character

41
EMPOWER. PARTNER. LEAD.

Screen Editors—emacs
• Try this

– At the prompt, type ls
• Does file workshop exist? (It should.)

– At the prompt, type emacs workshop
• Identify the echo line
• Type some lines
• Note changes and information in echo line as you type
• Identify mode line (hint: in reverse type)
• Move cursor

– Use arrow keys
– Use key combinations
– Use numerical arguments

• Delete characters, undo typing

42
EMPOWER. PARTNER. LEAD.

Screen Editors—emacs
• Manage line length

– Press <return> at end of line
– Use auto-fill mode for current editing session only

• <ESC>x auto-fill-mode
– Toggle auto-fill-mode on or off

• <ESC>64<ESC>x set-fill-mode
– Set line length to 64 characters

43
EMPOWER. PARTNER. LEAD.

Screen Editors—emacs
• File management

– Create new/open existing file emacs file.name
– Save changes ^x^s

• Does not exit file
– Insert file into buffer at cursor ^x i file.name
– Read a file, no editing permitted ^x^r file.name
– Exit a file ^x^c

44
EMPOWER. PARTNER. LEAD.

Screen Editors—emacs
• Commands

– More than 400
– Have long names, but often have abbreviations
– Abbreviations are bound to command
– To refer to abbreviations, look at command dispatch table

• Long command name use
– <ESC>x command-name

• Long name use—workarounds
– Keystroke abbreviation (e.g., ^n)
– Typing assistance
– List of possible commands in echo line
– Prompts in echo line

45
EMPOWER. PARTNER. LEAD.

Screen Editors—emacs
• Assistance

– Internet
• Do NOT print emacs manual—it’s about a million pages

– Written manual
– Reference card from manual
– Online tutorial
– Online help system

• ^h = help options
• ^h^h (possible help options, prompts you to type desired one)
• Third ^h displays what option means

46
EMPOWER. PARTNER. LEAD.

Screen Editors—vi
• Early form of word processing

• Not especially easy to use

• Good for quick edits

• Exists on all UNIX systems, so good to know

• Approximately 100 commands
– Can do a lot with just a few commands

47
EMPOWER. PARTNER. LEAD.

Screen Editors—vi
• Create new/open existing file vi file.name

• Basic vi concept
– Modes

• Input
– Different ways to get into input mode
– Only one way to get out of input mode <ESC>

• Command
– Always in command mode when you create a new or open an

existing file in vi

48
EMPOWER. PARTNER. LEAD.

Screen Editors—vi
• Create a new/open an existing file

– vi file.name
– vedit file.name

• Move cursor
– If system is so configured, use arrow keys
– h (left) j (down) k (up) l (right)

• Enter insert mode (check bottom of screen)
– Insert at cursor i
– Append after cursor a
– Append at end of line A
– Insert at beginning of line I
– Others

49
EMPOWER. PARTNER. LEAD.

Screen Editors—vi
• Exit insert mode

– <ESC>

• Exiting file
– Save changes, exit file <ESC>ZZ
– Save changes, do not exit file <ESC>:w
– Exit file, do not save changes <ESC>:q!
– Save changes, exit file <ESC>:wq
– (Note—I added <ESC> as a gentle reminder; it may not

be necessary, as you may be in command mode, but
just in case…)

50
EMPOWER. PARTNER. LEAD.

Screen Editors—vi
• Erase

– Delete key
– Sometimes use ^h

• Deleting (make sure in command mode)
– Delete character x
– Delete line dd
– Replace character r

51
EMPOWER. PARTNER. LEAD.

Screen Editors—vi
• Line management

– Press <Return> at end of each line
– Set line wrap at 15 characters from right margin

• <ESC>:set wm=15

• Searching long file
– Search forward for pattern <ESC>/pattern

• Search for next instance of pattern n

– Search backward for pattern <ESC>/pattern
• Search for next instance of pattern n

52
EMPOWER. PARTNER. LEAD.

Screen Editors—vi
• Create a new file

– vi file.name (file.name doesn’t exist)
– Note a new file has a row of ~

• Set margin wrap 16 characters from right margin

• Type some lines
– Type i (note bottom of screen—insert mode)

• Do a search for a particular character, pattern
– Be sure to press <ESC> to enter command mode

• Exit the file, saving the changes

53
EMPOWER. PARTNER. LEAD.

Screen Editors—vi
• Many more commands, features

– This is a brief introduction
– Again, this is enough to allow you to create files
– Again, good editor for quick but powerful edits

54
EMPOWER. PARTNER. LEAD.

Screen Editors—pico
•pico

– Comes with some UNIX mail systems
– Simple
– Menu-based
– Limited
– Use for very quick edits
– Not always on system you are using
– Can ask systems administrator for access
– Check Cheat Sheet (earlier) for basics

55
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II
• Concepts

• Manipulating

• Wildcards

56
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II—Concepts
• pathname

– Path through directory system to file
– Example

• /usr/Workshop1/Subdirectory/file.name

– tail (basename)
• Last part of pathname

– head
• Everything except the tail

– Absolute (full) pathname
• Shown when you type pwd

57
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II—Concepts
•/ (forward slash)—two meanings

– Very first / in absolute pathname = root or top of file
system

– Every other / in absolute or relative pathname =
end of directory or file name

58
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II—Manipulating
•rm –i –r file.name

– Irreversible

•cp –i file.name1 file.name2 or
file.name pathname

– Irreversible; make sure you don’t use existing
file.name

•mv –i file.name1 file.name2 or
file.name pathname

– Irreversible

•ln file.name1 name.2 or
file.name pathname

59
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II—Manipulating
•mkdir directory.name

– Create directory.name
– Must be unique in current directory

•rmdir directory.name
– directory.name must be empty (no files)
– Delete files in directory.name, then invoke rmdir

•cd directory.name
– Move to directory.name
– Invoke ls to see if directory.name in current directory

•pwd
– Determine what current directory.name is

60
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II—Manipulating
• Create some empty directories (may want first letter in upper case)
• Invoke ls command
• Invoke ls –F command—what is the difference?
• Invoke ls –a command—we’ll discuss output later
• Move to one of new directories
• Create another new directory
• Invoke ls command (with or without options)
• Move to that new directory
• Create another new directory
• Move to new directory
• Invoke pwd command
• Type cd with no argument
• Invoke pwd command—where are you now?

61
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II—Manipulating
• Invoke cd command to make sure you are in your home directory
• Invoke pwd command to ascertain where you are
• Create some empty files (do not use existing file.name)

– Easy way: touch file.name
• Verify creation of file.name with ls
• Verify empty contents with cat file.name more file.name
less file.name

• Copy one of new file.names into directory.name
• Move one of new file.names into directory.name
• Invoke ls to see home directory contents
• cd into directory.name
• Invoke ls to see directory contents
• Invoke cd with no arguments
• Invoke pwd to verify where you are

62
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II—Wildcards
• Used to save time, typing

• Used for pattern searching

• Actually two types
– Wildcards

• For many simple UNIX tasks
– For general expressions

• For many more complex tasks

63
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II—Wildcards
•?

– Match one character and one character only
– Example: ls arks?

• Results, if any: a 5-letter file.name that begins with arks and ends
with one character only

•*
– Match zero or more characters
– Example: ls arks*

• Results, if any: a 4-letter to n-letter file.name that begins with arks

•[]
– Match one character of the ones (individually noted or in a range)

in []
– Example: ls arks[a-d]

• Results, if any: 5-letter file.name that begins with arks and ends
with a, b, c, d

64
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II—Wildcards
•cd

•pwd

• Create new directory States

• Move to States
• Create new files with touch

– Touch alabama alaska florida massachusetts ohio

•ls with different wildcards (think what output will be)
– ls al* ls *a
– ls ?la ls ?la*
– ls [a-f]* ls [b-z]labama
– ls [a-f]labama ls *[i]*
– ls m* ls O*

65
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II—Abbreviations
•. (dot)

– Current working directory
– Note: dot in UNIX overall has several uses

•.. (two dots)
– Directory above the one in which you are working

(parent directory)

•~ (tilde)
– Home directory

•cd [no arguments]
– Takes you to your own home directory

66
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II—Permissions
• Allow/restrict access to file.names,
directory.names

• Command and structure
– chmod ugo+rwx file.name
– chmod ugo+rwx directory.name

• To see permissions
– ls –l (print contents of directory in long form)
– ls –l directory.name or ls –l file.name

(print long form of directory.name or file.name)

67
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II—Permissions
• Examples of result of ls –l

– drwxr-xr-x …
– -rw-r--r-- …
– Directory = d
– Columns 2, 3, 4: permissions for user (read, write, execute)
– Columns 5, 6, 7: permissions for group (read, write, execute)
– Columns 8, 9, 10: permissions for others (read, write, execute)

• Example use
– chmod g+rwx . (change home directory permission for group)
– chmod u+rwx file.name (change permissions for
file.name so user—owner—can read, write, execute)

– chmod a+r directory.name (change permissions for
directory.name so all can read it; all = user, group, other)

68
EMPOWER. PARTNER. LEAD.

Files and Directories, Part II—Permissions
• Create a file called filez (touch, cat, vi,
emacs)
– ls –l filez
– chmod g_rwx filez
– ls –l filez

• Create a directory called Dir.z
– ls –l Dir.z
– chmod a-rwx Dir.z
– ls –l Dir.z

69
EMPOWER. PARTNER. LEAD.

UNIX Shell
• Concepts

• Job Control

• Redirection

• History
•alias (csh)

• File Name Completion (csh)

• Shell Scripts

• Variables

• Dot Files

70
EMPOWER. PARTNER. LEAD.

UNIX Shell—Concepts
• Two functions of shell

– Command interpreter between machine and user
– Programming language

• Can string together basic commands to perform larger task
– One way: put several commands on one line, separate

commands with semicolon
• Basic command structure

– command –option argument <Return>
• Can use pipe (|) to combine commands

– Pipe takes output of one command, uses it as input to next
command

– Other redirections can be used, too

71
EMPOWER. PARTNER. LEAD.

UNIX Shell—Concepts
• Pipe example

– ls –l | more

• Other redirect examples
– lp –d oscps5 < file.name
– mail address < file.name
– who > who.file
– date >> who.file

• Look at who.file for results of >>

72
EMPOWER. PARTNER. LEAD.

UNIX Shell—Concepts
• Redirection

– Redirect output to a file >
– Override file protection, if set (csh option) >!
– Redirect/append to existing file >>
– Redirect input from file; get data out of a file; use with

commands/programs that normally take input from
terminal <

– Combined redirects
• Take data from file, process through initial command, redirect

to a file <>
• Act on information derived from last named file><

– Take input, route it to two places (terminal and
file.name)
• tee [-a] file.name (-a—append, do not overwrite)

73
EMPOWER. PARTNER. LEAD.

UNIX Shell—Job Control
•^z

– Stop current job

•fg
– Resume stopped job

•jobs
– List, label jobs you’ve begun

[2] Stopped vi file.name1
[3] Stopped vi file.name2
[4] Stopped vi file.name3
[5] Running command

•fg %n
– Brings job number n to foreground

•bg %n
– Sends job number n to background

74
EMPOWER. PARTNER. LEAD.

UNIX Shell—Job Control
• Can use ps (report on processes currently on

computer) to find PID
PID TT STAT TIME Command
431 A5 R 0:05 sort file.name1
432 A5 R 0:00 ps

• Killing a job that is out of control—shell command
– kill %ID or kill pid

• Even more sure kill: kill -9 %n

• On Glenn, can use qdel to kill job—PBS
command
– qdel jobid

75
EMPOWER. PARTNER. LEAD.

UNIX Shell—History
• csh

– Command: history
– Default: 20 commands (number can be changed)
– Repeat earlier commands: !! (repeat last command) or history
n

– Able to modify earlier commands before repeating
– Able to set history number for current session or permanently

• set history=30
• Modify .cshrc file with same set command

• Other shells
– Command: history
– Repeat last command: r (ksh) fc –s (bash)
– Repeat nth command: r n (ksh) fc –s n (bash)
– ksh often can press <ESC>k to go through history (varies with

system), edit with vi

76
EMPOWER. PARTNER. LEAD.

UNIX Shell—alias (csh)
• Purpose: rename, redefine, rearrange commands

• Can be temporary (for present session) or
permanent (put in .cshrc or .profile)

• Can use arguments

• Can be used for compound (more than one)
commands, complex commands, inside other
aliases

77
EMPOWER. PARTNER. LEAD.

UNIX Shell—alias (csh)
• Summary

– Print list of aliases: alias [none] [none]
– Create alias: alias [none] abb command
– Remove alias: unalias [none] abb

78
EMPOWER. PARTNER. LEAD.

UNIX Shell—File Name Completion (csh)
• Purpose: speed up typing

• Format
– command/file.name/dir.name chars<ESC>
– If more than one command/file.name/dir.name has

common characters, result will show the next common
letters; then type another character followed by <ESC>

• Temporary use
– At command line, type: set filec

• Permanent use
– Put set filec in .cshrc file

79
EMPOWER. PARTNER. LEAD.

UNIX Shell—Shell Scripts
• Purpose

– Construct new commands by creating file with desired
commands

– When you run shell.script, new shell opens for
duration of command, then closes

• Method
– Create shell.script file with command(s) you want

• Run shell.script
– csh shell.script or sh shell.script OR
– chmod u+x shell.script (what does this do?)

• At prompt, type shell.script

80
EMPOWER. PARTNER. LEAD.

UNIX Shell—Shell Scripts
• Flexible

– Script can contain more than one command: separate
with semicolons

– Command can use command-line arguments
– Can create loops and other programming features

UNIX Shell—Shell Script
• OSC has software package called COMSOL—only

one license
– Command to check to see if someone is using

COMSOL license:
/usr/local/sbin/multil lmstat –c 6660@license2.osc.edu –f COMSOL

– Create a file called comlic with just the above
command in it (use cat, emacs, or vi to create file)

– Type ls –l comlic to check the permissions
– Make the file executable by you: at the prompt, type
chmod u+x comlic

– Type ls –l comlic to check permissions again
– To run the script, at the prompt, type ./comlic

81

mailto:6660@license2.osc.edu�

82
EMPOWER. PARTNER. LEAD.

UNIX Shell—Shell Scripts
• Sample

– vi i.remember
echo This is the $0 command
echo My first argument is $1
echo My third argument is $3
echo Here are all my arguments: $*

– chmod u+x i.remember
– i.remember three cats each wearing hats
– Output:

This is the i.remember command
My first argument is three
My third argument is each
Here are all my arguments: three cats each wearing hats

83
EMPOWER. PARTNER. LEAD.

UNIX Shell—Variables
• Purpose

– Names that can have different values assigned
– Some are built-in
– Some user can define

84
EMPOWER. PARTNER. LEAD.

UNIX Shell—Variables
• Built-in variables

– csh
• Two kinds

– Shell variable
» Known just to shell in which it’s created

– Environment shell variable
» Known to shell in which defined AND descendant shells

• Determine shell variables user has
– set
– Variables—lower case

• Determine environment variables user has
– setenv
– Variables—upper case

85
EMPOWER. PARTNER. LEAD.

UNIX Shell—Variables
• Obtaining value of variables

– echo $variable or echo $VARIABLE
– Can use $ construction to make shell script more

general, more versatile, usable by other users in their
own directories

• Example: cp $1 $HOME
– Anyone can use this, and file will be copied into that person’s
$HOME

• Note difference between following
– echo TERM output TERM
– echo $TERM output value of variable TERM

86
EMPOWER. PARTNER. LEAD.

UNIX Shell—Variables
• To set variables

– Ordinary variables
• set var.name = value

– Check to see if variable has been created by typing set
– Get rid of variable by typing unset var.name

– Environment variables
• setenv VAR.NAME value

– No equal sign
– Variable name—upper case

87
EMPOWER. PARTNER. LEAD.

UNIX Shell—Dot Files
•.login

•.cshrc

•.profile

• Ordinary txt files

• Can be modified

• Can contain programs
• Can see them with ls –a command

• Environment variables—usually in .login file

• Ordinary shell variables, aliases—usually in .cshrc file

88
EMPOWER. PARTNER. LEAD.

Filters and Information Processing
• Concepts
•spell

•grep

•find

89
EMPOWER. PARTNER. LEAD.

Filters and Information Processing
• Several; can be extremely useful

• Include
– pr
– wc
– sort
– join
– sed stream editor
– nroff, troff

90
EMPOWER. PARTNER. LEAD.

Filters and Information Processing—spell
•spell

– Primitive manner of spelling checking
– Format

• spell file.name
– Simple spell command

• spell file.name | more
– spell command when you have more than one screen of output

• spell file.name > spell.file
– When you want to capture output in a file called spell.file

• spell file.name | lp –d printer.name
– When you don’t want to create a file, just print the output to a

particular printer

91
EMPOWER. PARTNER. LEAD.

Filters and Information Processing—grep
• Find which files contain a particular word, etc.

• Examples:
– grep userid /etc/passwd

• Search for a particular userid in a systems file called
/etc/passwd

– grep expression file.name1 file.name2
• Search for a particular expression in each of two named files

– grep expression *.c
• Search for expression in all files in current directory that end

in .c
– grep expression */*

• Search for expression in all subdirectories of current
directory

92
EMPOWER. PARTNER. LEAD.

Filters and Information Processing—grep
• Options

– -n = precede each found line with line number in file
– -v = print lines that don’t match expression
– -c = count of the number of lines that match, don’t print

lines themselves
– -i = all lines that match without being case-sensitive

93
EMPOWER. PARTNER. LEAD.

Filters and Information Processing—grep
• Forms of regular expression

– Differ from UNIX wildcards but have similar purpose

• Some regular expressions
– . (dot) = any one character (= ? Of UNIX wildcards)
– [string] = matches any character in string (same as

UNIX wildcards)
– ^expression = match lines that begin with expression
– \character = turn off special meaning of character

94
EMPOWER. PARTNER. LEAD.

Filters and Information Processing—find
• Search for files that meet some criterion

– Name
– Size
– Files not accessed for certain number of days
– Files having certain number of links
– More

• General format
– find directory.pathname search.criterion action

• directory.pathname = pathname of directory to be
recursively searched

• search.criterion = files that are sought
• action = what to do with found files

95
EMPOWER. PARTNER. LEAD.

Filters and Information Processing—find
• Arguments

– directory.pathname(s)
– search.criteria
– action(s)

•search.criteria
– -name file.name = files named file.name
– -size n = files of size n blocks
– -links n = files with n links
– -atime n = files accessed n days ago
– -mtime n = files modified n days ago
– -newer file.name = files modified more recently

than file.name

96
EMPOWER. PARTNER. LEAD.

Filters and Information Processing—find
•actions

– -print = print pathnames of found files
– -exec command { } \; = executes given command

on finding file ({ } = found file)
– -ok command \; = -exec, except prompts user to say
y or n to executing command

97
EMPOWER. PARTNER. LEAD.

Selected Sources for Further Enlightenment
• Internet (of course)
• Arthur, Lowell Jay, et al. UNIX Shell Programming, ISBN 0-471-16894-

7
• Cameron, Debra. Learning GNU Emacs, ISBN 0-596-0064-9
• Dougherty, Dale. sed & awk, ISBN 1=56592-225-5
• Dyson, et al. UNIX Complete, ISBN 0-7821-2528-X
• Kernighan, Brian W., et al. The UNIX Programming Environment, ISBN

0-13-937681-X
• Kochan, Stephen G., et al. UNIX Shell Programming, ISBN 0-672-

48448-X
• Lamb, Linda, et al. Learning the vi Editor, ISBN1-56592-426-6
• Lasser, John. Think Unix, ISBN0-7897-2376-X

98
EMPOWER. PARTNER. LEAD.

Selected Sources for Further Enlightenment
• Martin, Don, et al. UNIX Primer Plus, ISBN 1-57169-165-0
• Michael, Randall K. Mastering Unix Shell Scripting, ISBN 0-471-21821-

9
• Muster, John. UNIX Made Easy, ISBN 0-07-219314-X (my favorite)
• Ray, Deborah S., et al. Visual Quickstart Guide: UNIX, ISBN 0-201-

35395-4
• Raymond, Eric S. The Art of UNIX Programming, ISBN 0-13-142901-9
• Reichard, Kevin, et al. UNIX in Plain English, ISBN 0-7645-7011-0
• Robbins, Arnold, et al. Classic Shell Scripting, ISBN 0-596-00595-4
• Robbins, Arnold. UNIX in a Nutshell, ISBN1-56592-427-4
• Robbins, Arnold. vi Editor, Pocket Reference, ISBN 1-56592-497-5
• Rosen, Kenneth, et al. The Complete Reference: UNIX, ISBN-13: 978-

0-07-226336-7; ISBN-10: 0-07-226336-9
• Taylor, Dave. SAMS Teach Yourself Unix, ISBN 0-672-32127-0

	Using Glenn—the IBM Opteron 1350�Introduction to UNIX
	Functions - Scope of Activity
	Contents
	Introduction
	Introduction—Acknowledgments
	Introduction—Purpose of Course
	Introduction—What Is UNIX?
	Introduction—Software Uses
	Introduction—Structure of UNIX
	Useful Concepts
	Useful Concepts—Getting Out of Trouble
	Useful Concepts—Terms and Concepts
	Useful Concepts—Terms and Concepts
	Commands
	Commands—Structure
	Commands—Special Features
	Commands—First (and Last) Commands
	Commands—First (and Last) Commands
	Commands—Exercise 1
	Commands—Easy Commands
	Commands—Exercise 2
	Commands—Exercise 2
	Commands—Exercise 2
	Files and Directories, Part I
	Files and Directories, Part I—Illustrations
	Files and Directories, Part I—Illustrations
	Files and Directories, Part I—Where Am I?
	Files and Directories, Part I—First Commands
	Files and Directories, Part I—Name Hints
	Files and Directories, Part I—Creating Files
	Files and Directories, Part I—Creating Files
	Files and Directories, Part I—Creating Files
	Files and Directories, Part I—Creating Files
	Screen Editors
	Screen Editors—Cheat Sheet
	Screen Editors—emacs
	Screen Editors—emacs
	Screen Editors—emacs
	Screen Editors—emacs
	Screen Editors—emacs
	Screen Editors—emacs	
	Screen Editors—emacs
	Screen Editors—emacs
	Screen Editors—emacs
	Screen Editors—emacs	
	Screen Editors—vi
	Screen Editors—vi
	Screen Editors—vi
	Screen Editors—vi
	Screen Editors—vi
	Screen Editors—vi
	Screen Editors—vi
	Screen Editors—vi	
	Screen Editors—pico
	Files and Directories, Part II
	Files and Directories, Part II—Concepts
	Files and Directories, Part II—Concepts
	Files and Directories, Part II—Manipulating 	
	Files and Directories, Part II—Manipulating
	Files and Directories, Part II—Manipulating
	Files and Directories, Part II—Manipulating
	Files and Directories, Part II—Wildcards
	Files and Directories, Part II—Wildcards
	Files and Directories, Part II—Wildcards
	Files and Directories, Part II—Abbreviations
	Files and Directories, Part II—Permissions
	Files and Directories, Part II—Permissions
	Files and Directories, Part II—Permissions
	UNIX Shell
	UNIX Shell—Concepts
	UNIX Shell—Concepts	
	UNIX Shell—Concepts
	UNIX Shell—Job Control
	UNIX Shell—Job Control
	UNIX Shell—History
	UNIX Shell—alias (csh)
	UNIX Shell—alias (csh)
	UNIX Shell—File Name Completion (csh)
	UNIX Shell—Shell Scripts
	UNIX Shell—Shell Scripts
	UNIX Shell—Shell Script
	UNIX Shell—Shell Scripts
	UNIX Shell—Variables
	UNIX Shell—Variables
	UNIX Shell—Variables
	UNIX Shell—Variables
	UNIX Shell—Dot Files
	Filters and Information Processing
	Filters and Information Processing
	Filters and Information Processing—spell
	Filters and Information Processing—grep
	Filters and Information Processing—grep
	Filters and Information Processing—grep
	Filters and Information Processing—find
	Filters and Information Processing—find
	Filters and Information Processing—find
	Selected Sources for Further Enlightenment
	Selected Sources for Further Enlightenment

