

Using the IBM Opteron 1350 at OSC

October 19-20, 2010

Table of Contents

- Hardware Overview
- The Linux Operating System
- User Environment and Storage

Hardware Overview

- Hardware introduction
- Login node configuration
- Compute node configuration
- External network connectivity

Hardware introduction

- Old configuration
 - 877 System x3455 compute nodes
 - 88 System x3755 compute nodes
 - 1 e1350 QS20 Blade Center
 - 4 Dual Cell
 - 4 System x3755 login nodes
- Expansion cluster
 - 650 System x3455 compute nodes
 - 10 System x3755 compute nodes
- All connected by 10 Gbps or 20 Gbps Infiniband

Hardware introduction

- What does this hardware mean to you?
 - Performance increased thirty-fold over the old OSC systems
 - More than 75 trillion floating point operations per second peak performance

Login node configuration

- 4 system x3755 login nodes
 - Quad socket, dual core 2.6 GHz Opterons
 - 32 GB RAM
 - 225 GB local disk space in /tmp

Compute node configuration

- 877 System x3455 compute nodes
 - Dual socket, dual core 2.6 GHz Opterons
 - 8 GB RAM
 - 48 GB local disk space in /tmp
- 88 System x3755 compute nodes
 - Quad socket, dual core 2.6 GHz Opterons
 - 64 GB (2 nodes), 32GB (16 nodes), 17GB (70 nodes)
 RAM
 - 1.8TB (10 nodes) or 218GB (76 nodes) local disk space in /tmp

Empower. Partner. Lead.

Compute node configuration

- 650 System x3455 compute nodes
 - Dual socket, quad core 2.5 GHz Opterons
 - 24 GB RAM
 - 393 GB local disk space in /tmp
- 10 System x3755 compute nodes
 - Quad socket, quad core 2.4 GHz Opterons
 - 64 GB RAM
 - 188 GB local disk space in /tmp
- Infiniband:
 - 10 Gbit/s card on old nodes
 - 20 Gbit/s card on expansion nodes

Empower. Partner. Lead.

Dual Socket

Quad Socket

Quad CoreNumber of Cores: 8 Memory: 24 GB To request, specify: $1 \le N \le 256$ $5 \le C \le 8$ Type=newdualNumber of Cores: 16 Memory: 64 GB To request, specify: $N = 1$ $9 \le C \le 16$ Type=newquad To request memory, $\# PBS -1 nodes=5:ppn=8:newdual$ Example: $\# PBS -1 nodes=5:ppn=8:newdual$ Number of Cores: 16 Memory: 64 GB To request, specify: $N = 1$ $9 \le C \le 16$ Type=newquad To request memory, $\# PBS -1 mem = 32 GB$	Dual Core	Number of Cores: 4 Memory: 8 GB To request, specify: $1 \le N \le 512$ $1 \le C \le 4$ Type=olddual Example: #PBS -l nodes=10:ppn=4:olddual	Number of Cores: 8 Memory: (70) 16 GB, (16) 32 GB, (2) 64 GB To request, specify: N = 1 $1 \le C \le 8$ Type=oldquad To request memory, #PBS -1 mem=16GB Example: #PBS -1 nodes=1:ppn=8:oldquad
Memory: 24 GBMemory: 64 GBTo request, specify: $1 \le N \le 256$ $5 \le C \le 8$ $9 \le C \le 16$ Type=newdualType=newquadExample:# PBS -1 nodes=5:ppn=8:newdual# PBS -1 nodes=5:ppn=8:newdual# PBS -1 mem = 32 GBExample:# PBS -1 mem = 32 GBExample:# PBS -1 mem = 32 GB		Number of Machines: 877	Number of Machines: 88
Number of Machines: 650 Number of Machines: 8	Quad Core	<pre>Memory: 24 GB To request, specify:</pre>	<pre>Memory: 64 GB To request, specify:</pre>

Empower. Partner. L#PBS -1 nodes=N:ppn=C:typeDhio Supercomputer Center

External network connectivity

- Interactive logins using the ssh protocol from anywhere on the Internet are handled by the login node, glenn.osc.edu. The ssh protocol is used because it does not send clear-text passwords and uses encryption.
- Documentation: OSC Technical Information site: http://www.osc.edu/supercomputing

The Linux Operating System

- What is Linux?
- Linux features
- Why use Linux in a cluster environment
- Processes and threads in Linux

What is Linux?

- Freely redistributable, open-source operating system
- Developed by programmers from all over the world
- Based on ideas espoused by UNIX and its variants
 Not based directly on UNIX code
- Implements a superset of the POSIX and Open Group Single UNIX specifications for system interfaces

Linux features

- Freely distributable with full source code
- Runs on variety of platforms
- Multi-threaded, fully preemptive multitasking
- Implements most of the POSIX and Open Group Single UNIX system APIs
- Protocol and source compatibility with most other UNIX-like operating systems

Why use Linux in a cluster environment

- Widely available
- Inexpensive
- Easily modified and customized
- Compatible with most existing cluster software (MPI, batch systems, numerical libraries, etc.)
- Performs as well as or better than other operating systems on the same hardware for many technical computing applications

Processes and threads in Linux

- Historically: basic block of scheduling in UNIX—
 process
- UNIXes have added concept of multiple *threads* of execution within a single process
- Linux supports both processes and threads
- Linux's internal scheduler: tries to load-balance running processes and threads
 - Will be given full use of a processor as long as there are no more processes/threads than there are processors

Processes and threads in Linux

- Process: a running program
- Elements of a process:
 - Memory (*text*, *data*)
 - Register contents
 - Program Counter (PC)
 - Process status
- Each process: unique process id
- Distinguish between process and processor

Processes and threads in Linux

- Process state codes
 - s sleeping (blocked), waiting for a resource
 - **R** running, actually doing work
 - **z** terminated, but information still in process table
 - **T** stopped, can be restarted
- Sometimes processes spin wait or busy wait—eat CPU without doing anything useful
- Processes can be *switched out* to allow higher-priority process to run or to wait for something to happen, like I/O

Processes on a node

🛃 gl	enn.osc.	edu	u - 1	PuTT	Y							
top -	20:57:37	up 2	3 da	ays, 12	2:18,	1 us	eı	c, lo	ad av	verage: 3.7	71, 3.58, 3.31	
Tasks:	: 133 tota.	1,	4 1	unning	y, 129) slee	ep:	ing,	0 st	opped, () zombie	
											, 0.0%si, 0.0%st	
Mem:	8178184k	tot	al,	65319	916k v	used,		164626	8k fr	ee, 371	728k buffers	
Swap:	15999524k	tot	al,	1	l2Ok ı	used,	1!	599940	4k fr	ee, 54409	980k cached	
	USER	PR	NI	VIRT	RES			¦%CPU ≧		TIME+	COMMAND	
30351	osu2722	25	Ο					100.2			3 gtkn.x	
5660	osu4284	25				1032	R	99.8			Pmn_WatCosolv_N	
6694	osu3446	25	0	1643m	690m	59m	R	99.8	8.6	88:08.23	aliroot	
1	root	15	0	10352	704	592	ន	0.0	0.0	0:08.04	init	
2	root	RT	-5	0	0	0	ន	0.0	0.0	0:00.02	migration/O	
3	root	34	19	0	0	0	ន	0.0	0.0	0:00.00	ksoftirqd/0	
4	root	RT	-5	0	0	0	ន	0.0	0.0	0:00.00	watchdog/0	
5	root	RT	-5	0	0	0	ន	0.0	0.0	0:00.04	migration/1	
6	root	34	19	0	0	0	ន	0.0	0.0	0:00.00	ksoftirqd/1	
7	root	RT	-5	0	0	0	ន	0.0	0.0	0:00.00	watchdog/1	
8	root	\mathbf{RT}	-5	0	Ο	0	ន	0.0	0.0	0:00.02	migration/2	
9	root	34	19	0	Ο	0	ន	0.0	0.0	0:00.00	ksoftirqd/2	
10	root	RT	-5	0	Ο	Ο	ន	0.0	0.0	0:00.00	watchdog/2	
11	root	RT	-5	0	0	Ο	ន	0.0	0.0		migration/3	
12	root	34	19	0	0	Ο	ន	0.0	0.0		ksoftirqd/3	
	root	RT	-5	0	0	Ο	ន	0.0	0.0		watchdog/3	
	root	10	-5	0	Ο	Ο	ន	0.0	0.0		events/0	

Empower. Partner. Lead.

User Environment and Storage

- Accessing the IBM 1350 Opteron Cluster
- Modules
- Text editing
- System status
- Third party applications
- Storage

Accessing the IBM 1350 Opteron Cluster

- Connections to OSC machines are via **ssh** only
 - Linux: Use Secure Shell protocol: at prompt, enter
 - ssh userid@glenn.osc.edu
 - Windows: **ssh** Software Needed
 - Both commercial and free versions are available
- Logging off
 - At prompt, enter "exit"
- Graphics
 - Standard on Unix systems
 - Need extra software for PC or Mac
 - Many performance analysis tools have an X-based GUI along with command line interfaces
 - ssh from a Unix/Linux machine should automatically configure X-Display forwarding

Accessing the IBM 1350 Opteron Cluster

- More on X-Display from IBM 1350 Opteron Cluster
 - Can run virtually any X client program on login node displayed to remote workstation
 - Prefer that you use this only for programs that can't be run any other way
 - Note: running remotely displayed xterm session requires much I/O bandwidth
 - Doesn't really benefit you more than **ssh**
 - Remote X-Display in interactive batch jobs (more in debugging MPI programs section)
 - Also supported in **ssh** sessions

Empower. Partner. Lead.

Modules

- Modules interface
 - Allow multiple versions of software to coexist
 - Allow you to add or remove software from your environment without having to manually modify environment variables

Modules

- What modules do you have loaded?
 - At the prompt, type: module list
- What modules are available?
 - At the prompt, type: module avail
- Multiple versions of the same software
 - module avail matlab
- How to add a software module to your environment
 At the prompt, type: module load modulename
- How to remove a software package from your environment
 - At the prompt, type: module unload modulename

Modules

- Modules and the UNIX shell
 - How modules work
 - Modify environment variables like **\$PATH** and **\$MANPATH** within your shell
 - Can be done at prompt or in .profile or .cshrc
 - Do NOT explicitly set **\$PATH** in your .profile or .cshrc
 - DO append directories to the existing **\$PATH**
 - Type: setenv PATH \$HOME/bin:\$PATH (csh)
 - Type: export PATH=\$HOME/bin:\$PATH (ksh)

Text editing

- Front end node has vi editor installed – To verify, at the prompt, type: which vi
- Popular editor, emacs, also available
 To verify, at the prompt, type: which emacs
- To review vi and emacs usage, use a browser search engine, a commercial reference book

- Useful batch queue commands
 - qstat: show status of PBS batch jobs
 - showstart: shows an estimated time job will start
 - qpeek: shows status of running job
 - OSCusage: shows account balance of user's project

• OSCusage

- Interface to OSC's local accounting database
- RU usage for your project on specified date or range of dates
- At prompt, type: OSCusage
- Example (partial output):

Usage Statistics for project PZS0002 for 12/30/2007 to 12/30/2007

RU Balance: -11512.30382

Username Dates

RUs Status

oschelp	12/30/2007	to	12/30/2007	0.00000	ACTIVE
alanc	12/30/2007	to	12/30/2007	0.00000	ACTIVE
srb	12/30/2007	to	12/30/2007	73.11018	ACTIVE
jimg	12/30/2007	to	12/30/2007	0.00000	ACTIVE
woodall	12/30/2007	to	12/30/2007	0.00000	ACTIVE

Empower. Partner. Lead.

• OSCusage

- Default usage of all members of project group listed
- Option use –q to see only your own statistics
- At prompt, type: OSCusage -q

Usage Statistics for project PZS0002 for 12/30/2007 to 12/30/2007

RU Balance: -11512.30382

Username Dates

RUs Status

woodall 12/30/2007 to 12/30/2007 0.00000 ACTIVE ======== PZS0002 TOTAL 0.00000

OSCusage

- For date or range of dates
 - Specify start and end dates
 - Format: MM/DD/YYYY
 - End date used only if you want more than one day
- Detailed list
 - Use -v (verbose) flag
 - How much was charged for CPU usage on each of OSC's machines

- Statewide Software Licensed software
 - Altair Hyperworks
 - high-performance, comprehensive toolbox of CAE software for engineering design and simulation
 - Totalview Debugger
 - performance tuning and debugging tools
 - Intel Compilers, Tools, Libraries
 - an array of software development products from Intel
 - Partek
 - an integrated, scalable software environment capable of analysis and transformation of millions of records or millions of variables

Empower. Partner. Lead.

- **Chemistry** (asterisk indicates license must be submitted before software access is enabled)
 - *Amber
 - *Gaussian03
 - *Gaussian09
 - GROMACS
 - LAMMPS
 - MacroModel®
 - NAMD
 - *Turbomole

Bioinformatics

- Bioperl
- BLÁST
- Clustalw
- MrBayes

- - *ABAQUS

 - *ANSYS
 - *LSDYNA

- - *Fluent
 - − ♥GridPro

Mathematics/Statistics

- MATLAB
- Octave
- <u>R</u>
- Stata
- FFTW
- ScaLAPACK
- sprng & sprng2
- ACML
- Intel MKL

- General programming software
 - HDF5
 - Intel compilers
 - NetCDF
 - PBS (TORQUE)
 - PGI compilers
 - Gnu Compiler and debugger

Empower. Partner. Lead.

- Visualization software (+ indicates license is available for download)
 - GNUplot
 - VTK
 - +VolSuite

• More applications can be found at Software page: http://www.osc.edu/supercomputing/software/software.shtml

- OSC's Mass Storage Environment
 - Home directories -- /home
 - 500GB of storage
 - 1000000 files
 - If a user's account is over the limit, he/she will be unable to create new files.
 - At each login, your quota and usage information will be displayed above the command line prompt:

As of 2010 Jul 15 04:02 userid yzhang on /nfs/06 used 28GB of quota 500GB and 41374 files of quota 1000000 files

As of 2010 Jul 16 04:02 project/group G-3040 on /nfs/proj01 used 27GB of quota 0GB and 573105 files of quota 0 files

Ohio Supercomputer Center

- OSC's Mass Storage Environment
- Project space
 - If more than 500GB or 1000000 files are required, users can request additional storage.
 - Send a request to jimg@osc.edu with the following information:
 - Userid
 - Project number
 - Estimated amount of disk space required beyond the 500 GB of home directory storage
 - Estimated length of time the extra disk space will be required
 - Brief justification for the additional storage
 - This project storage is separate from the home directory quota and monitored through the allocations evaluation process.

- File management
 - May want to compress large, unused files
 - Use compress, gzip, or bzip commands - gzip tends to do a better job
 - Use sftp command to transfer files between the login node (glenn.osc.edu) and your local workstation or PC
 - All cluster nodes mount home directories from the mass storage environment; any files you transfer to your home directory on glenn will also be accessible from the other OSC systems
 - Secure remote copy command, scp, also available
 - Transfer files to interactive mode

- OSC's Mass Storage Environment
 - Local scratch space -- /tmp
 - Local ext3 file system on each node
 - 48 GB on each old x3455 node
 - 393 GB on each new x3455 node
 - 1.6 TB (10 nodes) or 217 GB (76 nodes) on each old x3755 node
 - 188 GB on each new x3755 node
 - 315 TB total
 - NOT SHARED!
 - NOT BACKED UP!

- Batch-managed temporary directories
 - Every job run by the system
 - Unique local temporary directory created for it, named in the environment variable \$TMPDIR
 - Stored in /tmp on each compute node assigned to the job
 - Not shared!

• pbsdcp: Staging data in and out of \$TMPDIR

- \$TMPDIR (and /tmp)
 - not shared between nodes
 - cannot use a simple cp command to copy files into it

- Batch-managed temporary directories
 - **pbsdcp**: Staging data in and out of **\$TMPDIR**
 - distributed copy command called pbsdcp
 - General format:
 - pbsdcp [flags] file1 [more files] targetdir
 - Scatter mode (default):
 - pbsdcp \$HOME/inputfile \$TMPDIR
 - Gather mode:
 - pbsdcp -g \$TMPDIR/'*' \$HOME/output
 - Enclose wildcards (*, ?, etc.) in single quotes in gather mode!
 - Other flags:
 - -p preserve modification times
 - -r recursive

Empower. Partner. Lead.

- Managing file placement in jobs
 NEVER DO HEAVY I/O IN YOUR HOME DIRECTORY!
 - Home directories are for long-term storage, not scratch files
 - One user's heavy I/O load can affect responsiveness for all users on that file system

- Managing file placement in jobs
 - Preferred method for I/O-intensive jobs
 - Stage input files from home directory into **\$TMPDIR**
 - Execute calculations in **\$TMPDIR**
 - Stage results files in **\$TMPDIR** back to home directory

OSC Policies

- OSC-1, OSC Data Lifecycle Management Policy
 - Use of home directory, project directory and **\$TMPDIR**
 - Storage and file quotas
 - Backup and recovery

OSC Policies

• OSC-11, OSC User Management Policy

- Who can get an account
- Charges for accounts
- Types of accounts
- Account restrictions
- Account resource units
- Inappropriate system use

