
1

Point-to-Point Communications

• Definitions
• Communication

modes
• Routine names

(blocking)
• Sending a message
• Memory mapping
• Synchronous send
• Buffered send
• Standard send
• Ready send
• Receiving a message

• Wildcarding
• Communication envelope
• Received message count
• Message order

preservation
• Sample program
• Timers
• Exercise: Processor Ring
• Extra Exercise 1: Ping

Pong
• Extra Exercise 2:

Broadcast

2

Point-to-Point Communication

0

1 2
3

4

5
destination

source

communicator

• Communication between two processes
• Source process sends message to destination process
• Destination process receives the message
• Communication takes place within a communicator
• Destination process is identified by its rank in the

communicator

3

Definitions

• “Completion” of the communication means that memory
locations used in the message transfer can be safely
accessed
– Send: variable sent can be reused after completion
– Receive: variable received can now be used

• MPI communication modes differ in what conditions are
needed for completion

• Communication modes can be blocking or non-blocking
– Blocking: return from routine implies completion
– Non-blocking: routine returns immediately, user must

test for completion

4

Communication modes

Mode Completion Condition

Synchronous send Only completes when the receive has initiated

Buffered send Always completes (unless and error occurs), irrespective of
receiver

Standard send Message sent (receive state unknown)

Ready send Always completes (unless and error occurs), irrespective of
whether the receive has completed

Receive Completes when a message has arrived

5

Routine Names (blocking)

MODE MPI CALL

Standard send MPI_SEND

Synchronous send MPI_SSEND

Buffered send MPI_BSEND

Ready send MPI_RSEND

Receive MPI_RECV

6

Sending a message

C:

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Fortran:

CALL MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG
INTEGER COMM, IERROR

7

Arguments

buf starting address of the data to be sent

count number of elements to be sent

datatype MPI datatype of each element

dest rank of destination process

tag user flag to classify messages

comm MPI communicator of processors

involved

MPI_SEND(data,500,MPI_REAL,6,33,MPI_COMM_WORLD,IERROR
)

8

Memory mapping

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

The 2-D Fortran array

Is stored in memory as:

(“column-major”)

9

Synchronous send (MPI_Ssend)

• Completion criteria: receiving process sends
an acknowledgement (“handshake”), which
must be received by sender before the send
is considered complete

• Use if need to know that message has been
received

• Sending and receiving processes
synchronize
– Regardless of who is faster
– Processor idle time is probable

• Safest communication method

10

Buffered send (MPI_Bsend)

• Completion criteria: Completes when message
copied to buffer

• Advantage: Guaranteed to complete immediately
(predictability)

• Disadvantage: User cannot assume there is a pre-
allocated buffer and must explicitly attach it

• Control your own buffer space using MPI routines
MPI_Buffer_attach
MPI_Buffer_detach

11

Standard send (MPI_Send)

• Completion criteria: Unknown!

• Simply completes when the message has been
sent

• May or may not imply that message has arrived at
destination

• Don’t make any assumptions (implementation
dependent)

12

Ready send (MPI_Rsend)

• Completion criteria: Completes immediately, but
successful only if matching receive already posted

• Advantage: Completes immediately

• Disadvantage: User must synchronize processors
so that receiver is ready

• Potential for good performance

13

Receiving a message

C:

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, \
int source, int tag, MPI_Comm comm, MPI_Status *status)

Fortran:

CALL MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM,
STATUS, IERROR)

<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG
INTEGER COMM, STATUS(MPI_STATUS_SIZE), IERROR

14

For a communication to succeed…

• Sender must specify a valid destination rank

• Receiver must specify a valid source rank

• The communicator must be the same

• Tags must match

• Receiver’s buffer must be large enough

15

Wildcarding

• Receiver can wildcard

• To receive from any source

MPI_ANY_SOURCE

To receive with any tag

MPI_ANY_TAG

• Actual source and tag are returned in the
receiver’s status parameter

16

Communication envelope

Destination
Address

Sender’s Address

For the attention of:

Data
Item 1
Item 2
Item 3envelope routes the data

17

Communication envelope information

• Envelope information is returned from MPI_RECV
as status

• Information includes:
– Source: status.MPI_SOURCE or
status(MPI_SOURCE)

– Tag:status.MPI_TAG or status(MPI_TAG)

– Count: MPI_Get_count or MPI_GET_COUNT

18

Received message count

• Message received may not fill receive buffer
• count is number of elements actually received

C:
int MPI_Get_count (MPI_Status *status,

MPI_Datatype datatype, int *count)

Fortran:
CALL
MPI_GET_COUNT(STATUS,DATATYPE,COUNT,IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE
INTEGER COUNT,IERROR

19

0

1

2

3
4

5

Message order preservation

• Messages do no overtake each other
• Example: Process 0 sends two messages

Process 2 posts two receives that match
either message: Order preserved

communicator

20

Sample Program #1 -

C
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

/* Run with two processes */

int main(int argc, char *argv[]) {
int rank, i, count;
float data[100],value[200];
MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

if(rank==1) {
for(i=0;i<100;++i) data[i]=i;
MPI_Send(data,100,MPI_FLOAT,0,55,MPI_COMM_WORLD);

} else {

MPI_Recv(value,200,MPI_FLOAT,MPI_ANY_SOURCE,55,MPI_COMM_WORLD,&status);
printf("P:%d Got data from processor %d \n",rank, status.MPI_SOURCE);
MPI_Get_count(&status,MPI_FLOAT,&count);
printf("P:%d Got %d elements \n",rank,count);
printf("P:%d value[5]=%f \n",rank,value[5]);

}
MPI_Finalize();

}

Program Output
P: 0 Got data from processor 1
P: 0 Got 100 elements
P: 0 value[5]=5.000000

21

Sample Program #1 -

Fortran

PROGRAM p2p
C Run with two processes

INCLUDE 'mpif.h'
INTEGER err, rank, size
real data(100)
real value(200)
integer status(MPI_STATUS_SIZE)
integer count
CALL MPI_INIT(err)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rank,err)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,size,err)
if (rank.eq.1) then

data=3.0
call MPI_SEND(data,100,MPI_REAL,0,55,MPI_COMM_WORLD,err)

else
call MPI_RECV(value,200,MPI_REAL,MPI_ANY_SOURCE,55,

& MPI_COMM_WORLD,status,err)
print *, "P:",rank," got data from processor ",

& status(MPI_SOURCE)
call MPI_GET_COUNT(status,MPI_REAL,count,err)
print *, "P:",rank," got ",count," elements"
print *, "P:",rank," value(5)=",value(5)

end if
CALL MPI_FINALIZE(err)
END

Program Output
P: 0 Got data from processor 1
P: 0 Got 100 elements
P: 0 value[5]=3.

22

Timers

• Time is measured in seconds

• Time to perform a task is measured by
consulting the timer before and after

C:
double MPI_Wtime(void);

Fortran:
DOUBLE PRECISION MPI_WTIME()

23

Class Exercise: Processor Ring

• A set of processes is arranged in a ring

• Each process stores its rank in
MPI_COMM_WORLD in an integer

• Each process passes this on to its neighbor on
the right

• Each processor keeps passing until it receives
its rank back

24

Extra Exercise 1: Ping Pong

• Write a program in which two processes
repeatedly pass a message back and forth

• Insert timing calls to measure the time taken for
one message

• Investigate how the time taken varies with the size
of the message

25

Extra Exercise 2: Broadcast

• Have processor 1 send the same message to all
the other processors and then receive messages
of the same length from all the other processors

• How does the time taken vary with the size of the
messages and the number of processors?

	Point-to-Point Communications
	Point-to-Point Communication
	Definitions
	Communication modes
	Routine Names (blocking)
	Sending a message
	Arguments
	Memory mapping
	Synchronous send (MPI_Ssend)
	Buffered send (MPI_Bsend)
	Standard send (MPI_Send)
	Ready send (MPI_Rsend)
	Receiving a message
	For a communication to succeed…
	Wildcarding
	Slide Number 16
	Communication envelope information
	Received message count
	Message order preservation
	Sample Program #1 - C
	Sample Program #1 - Fortran
	Timers
	Class Exercise: Processor Ring
	Extra Exercise 1: Ping Pong
	Extra Exercise 2: Broadcast

