Discuss ...

Do we think that the multicore processor will
become the idealized parallel machine in the
same way the 701 defined the RAM model?

02/01/11

Finishing the Discussion on CTA

The CTA is supposed to guide us in finding
good computations to run on parallel
machines

Using it should
Aid in producing programs exploiting locality
Insure the program distributes work ‘well’

Other features, to be discussed later
Consider HW2 ...

02/01/11

Considering HW2

Task: Recognize the well-formedness of ((xxx))
An easy sequential solution ...

open =o0; /| keep count of opens
for (i=0; i<n; i++) § /[proceeding L to R
if (A[i]=="(") open++; /[found one
if (A[i]==")"){ /] here’s a match
open--;
if (open < 0) break; /| oops, mismatch

02/01/11

Where Was The Focus?

First step: Allocated work to processors,
generally by dividing it evenly

Next step: Found local, independent work to
perform

Next step: Focused on combining
subproblems into a tree network

Made correctness and termination conditions
explicit

02/01/11

Completing the CTA Discussion

Controller RAM

Not strictly needed | | | |

RAM RAM RAM RAM | ... RAM

Often available /N 71N 71N 7N 71N
HOW We | | does Interconnection Network

the CTA match other

parallel architectures?
CMPs & SMPs
Clusters

Blue Gene

02/01/11

Precision of the CTA

The CTA is a ‘'machine model’ — an abstraction
How can it be wrong?
Architecture has more features — shared memory

CTA predicts a certain behavior and features in
the architecture make the program much faster

If it mispredicts ... it's in trouble
Isn’t it a mistake for the CTA to ignore all the
great stuff architects put in a processor

02/01/11

Using the CTA

Why should we believe it's right?

In his thesis (1993) Calvin Lin did a careful study of
using the CTA as a programming model against the
models used by others (whatever they were)
CTA consistently pointed programmers to better solutions
The CTA's effectiveness was independent of architecture

The apparent value of the model is emphasizing locality —
always a benefit in computing

The greatest value of the CTA would be if it is
the basis for parallel programming languages

02/01/11

Threads

A thread consists of program code, a
program counter, call stack, and a small
amount of thread-specific data

Threads share access to memory (and the file
system) with other threads

Threads communicate through the shared
memory

Though it may seem odd, apply the CTA model to
thread programming -- emphasize locality, expect
sharing to cost plenty

02/01/11

Processes

A process is a thread in its own private
address space

Processes do not communicate through shared
memory, but need another mechanism like
message passing

Key issue: How is the problem divided among the
processes, which includes data and work

Processes (logically subsume) threads

02/01/11

Compare Threads & Processes

Both have code, PC, call stack, local data
Threads -- One address space
Processes -- Separate address spaces
Weight and Agility
Threads: lighter weight, faster to setup, tear
down, more dynamic

Processes: heavier weight, setup and tear down
more time consuming, communication is slower

02/01/11

Terminology

Terms used to refer to a unit of parallel
computation include: thread, process,
processor, ...

Technically, thread and process are SW, processor
(including SMT) is HW

Usually, it doesn’t matter

| will (try to) use “thread/process” for logical
parallelism, and “processor” when | mean physical
parallelism

02/01/11

Parallelism vs Performance

Naively, many people think that applying P
processors to a T time computation will result
in T/P time performance

Generally wrong

For a few problems (Monte Carlo) it is possible to
apply more processors directly to the solution

For most problems, using P processors requires a
paradigm shift
Assume “P processors =>T/P time" to be the
best case possible

02/01/11

Better Intuition

(Because of the presumed paradigm shift) the
sequential and parallel solutions differ so we do not
expect a simple performance relationship between
the two

More or fewer instructions must be executed
Examples of other differences

The hardware is different

Parallel solution has difficult-to-quantify costs such as
communication time, wait time, etc. that the serial
solution does not have

02/01/11

More Instructions Needed

To implement parallel computations requires
overhead that sequential computations do
not need

All costs associated with communication are

overhead: locks, cache flushes, coherency,
message passing protocols, etc.

All costs associated with thread/process setup

Lost optimizations -- many compiler
optimizations not available in parallel setting
Instruction reordering

02/01/11

Performance Loss: Overhead

Threads and processes incur overhead

'] Thread [|\
Setup Tear down “~

[] Process []

Obviously, the cost of creating a thread or process must
be recovered through parallel performance:

t, = p proc execution time
o,, = setup, o,, = tear down
cost(t,) = all other || costs

(t, +0,, + 0,4+ cCOSt(t))/2<t,

02/01/11

More Instructions (Continued)

Redundant execution can avoid
communication -- a parallel optimization

New random number needed for loop iteration:
(a) Generate one copy, have all threads ref it
... requires communication
(b) Communicate seed once, then each thread
generates its own random number ... removes
communication and gets parallelism, but by
increasing instruction load

02/01/11

Fewer Instructions

Searches illustrate the possibility of parallelism
requiring fewer instructions

il

Independently searching subtrees means an item is
likely to be found faster than sequential

02/01/11

One vs Many

Sequential hardware # parallel hardware
There is more parallel hardware, e.g. memory
There is more cache on parallel machines

?

Sequential computer # 1 processor of || computer,
because of coherence hw, power, etc.

Important in multicore context

Parallel channels to disk, possibly

02/01/11

Superlinear Speed up

Additional cache is an advantage of ||ism

EVSE:E:

The effect is to make execution time < T/P
because data (& program) memory
references are faster

Cache-effects help mitigate other || costs

02/01/11

Bottom Line ...

Applying P processors to a problem with a
time T (serial) solution can be either ...
better or worse ...

It's up to programmers to exploit the
advantages and avoid the disadvantages

02/01/11

Amdahl’s Law

If 1/S of a computation is inherently
sequential, then the maximum performance
improvement is limited to a factor of S

Ts=sequential time
T=parallel time
P =no. processors

Amdahl’s Law, like the Law of Supply and
Demand, is a fact

To=1/SxTc+(1-1/S)xT¢/P

02/01/11

Interpreting Amdahl’s Law

Consider the equation
Tp=1/S x Tg+(1-1/S) x Tg/ P

With no charge for || costs, let P — o then T,
—1/Sx T,

Amdahl’s Law applies to problem instances

02/01/11

More On Amdahl’s Law

Amdahl’s Law assumes a fixed problem
instance: Fixed n, fixed input, perfect
speedup

The algorithm can change to become more ||

Problem instances grow implying proportion of
work that is sequential may be smaller %

... Many, many realities including parallelism in
‘sequential’ execution imply analysis is simplistic

02/01/11

Two kinds of performance

Latency -- time required before a requested
value is available

Latency, measured in seconds; called transmit
time or execution time or just time
Throughput -- amount of work completed in

a given amount of time
Throughput, measured in “work”/sec, where

“work” can be bits, instructions, jobs, etc.; also
called bandwidth in communication

02/01/11

Reducing latency (execution time) is a
principal goal of parallelism
There is upper limit on reducing latency

02/01/11

Speed of light, esp. for bit transmissions

In networks, switching time (node latency)
(Clock rate) x (issue width), for instructions

Diminishing returns (overhead) for problem

instances

Throughput

Throughput improvements are often easier to

achieve by adding hardware

02/01/11

More wires improve bits/second

Use processors to run separate jobs

Pipelining is a powerful technique to execute more (serial)

operations in unit time

time

[[iD

EX

MA

WB

IF

ID

EX

MA

WB

<«——— suoponisul

IF

ID

EX

MA

WB

IF

ID

EX

MA

WB

IF

D

EX

MA

WB

IF

ID

EX

MA

WB

Latency Hiding

Reduce wait times by switching to work on
different operation (multithreading)
Old idea, dating back to Multics
In parallel computing it's called latency hiding
ldea most often used to lower impact of A cost
Have many threads ready to go ...
Execute a thread until it makes nonlocal ref
Switch to next thread
When nonlocal ref is filled, add to ready list

02/01/11

Latency Hiding (Continued)

Latency hiding requires ...
Consistently large supply of threads ~ A/e
where e = average # cycles between nonlocal refs

Enough network throughput to have many requests in the air
at once

[t1 o ——— Nonlocal data
3 reference time
t4

t5

t1 |
Latency hiding has been claimed to make shared
memory feasible in the presence of large A

02/01/11

Latency Hiding (Continued)

Challenges to supporting shared memory

Threads must be numerous, and the shorter the
interval between nonlocal refs, the more
Running out of threads stalls the processor

Context switching to next thread has overhead
Many hardware contexts -- or --
Waste time storing and reloading context

Tension between latency hiding & caching
Shared data must still be protected somehow

Other technical issues

02/01/11

Performance Loss: Contention

Contention -- the action of one processor interferes
with another processor’s actions -- is an elusive
quantity

Lock contention: One processor’s lock stops other processors
from referencing; they must wait

Bus contention: Bus wires are in use by one processor’s
memory reference

Network contention: Wires are in use by one packet, blocking
other packets

Bank contention: Multiple processors try to access different

02/01/11

Performance Loss: Load Imbalance

Load imbalance, work not evenly assigned to
the processors, underutilizes parallelism
The assignment of work, not data, is key

Static assignments, being rigid, are more prone to
imbalance
Because dynamic assignment carries overhead,

the quantum of work must be large enough to
amortize the overhead

With flexible allocations, load balance can be
solved late in the design programming cycle

02/01/11

The Best Parallel Programs ...

Performance is maximized if processors
execute continuously on local data without
interacting with other processors

To unify the ways in which processors could
interact, we adopt the concept of dependence

A dependence is an ordering relationship
between two computations
Dependences are usually induced by read/write
Dependences that cross process boundaries induce a

02/01/11

Example of Dependences

Both true and false dependences

1. sum = a + 1;
2. firgz:zg?m‘=s§um * scalel;
3. SUMe= 1;
4. second term = sum * scaleZ;

Flow-dependence read after write; must be
preserved for correctness
Anti-dependence write after read; can be
eliminated with additional memory

02/01/11

Removing Anti-dependence

Change variable names
1. sum = a + 1;
2. first_term = sum * scalel;
3. sum = b + 1;
4. second term = sum * scale?2;
1. first sum = a + 1;
2. first term = first sum * scalel;
3. second sum = b + 1;
4. second term = second sum * scale?2;
02/01/11

Granularity

Granularity is used in many contexts...here
granularity is the amount of work between
cross-processor dependences

Important because interactions usually cost

Generally, larger grain is better
+ fewer interactions, more local work
- can lead to load imbalance

Batching is an effective way to increase grain

02/01/11

Locality

The CTA motivates us to maximize locality

Caching is the traditional way to exploit locality ...
but it doesn’t translate directly to ||ism

Redesigning algorithms for parallel execution
often means repartitioning to increase locality

Locality often requires redundant storage and
redundant computation, but in limited quantities
they help

02/01/11

Measuring Performance

Execution time ... what's time?
‘Wall clock’ time
Processor execution time

System time
Paging and caching can affect time

Cold start vs warm start
Conflicts w/ other users/system components
Measure kernel or whole program

02/01/11

FLOPS

Floating Point Operations Per Second is a
common measurement for scientific pgms
Even scientific computations use many ints

Results can often be influenced by small, low-level
tweaks having little generality: mult/add

Translates poorly across machines because it is
hardware dependent

Limited application ... but it won’t go away!

02/01/11

Speedup and Efficiency

Speedup is the factor of improvement for P
processors: T[T,

48 |

Performance

Efficiency =
Speedup/P

Program!1

Speedup

Program?2 —

0 - 64
Processors

02/01/11

Issues with Speedup, Efficiency

Speedup is best applied when hardware is
constant, or for family within a generation

Need to have computation, communication in
same ratio

Great sensitivity to the T, value

T should be time of best sequential program on 1
processor of the ||-machine

T,_, # Tc Measures relative speedup

02/01/11

Scaled v. Fixed Speedup

As P increases, the amount of work per
processor diminishes, often below the amt

needed to amortize costs .
Speedup curves bend down

Speedup /
Scaled speedup keeps A

the work per processor I |
constant, allowing other -
effects to be seen

Both are important

02/01/11

What If Problem Doesn’t Fit?

Cases arise when sequential doesn’t fitina
processor of parallel machine
Best solution is relative speed-up

Measure T, iiest possible

Measure T,, compute T_/T, as having P/r potential

improvement

02/01/11

We Will Return ...

Many issues regarding parallelism have been
introduced, but they require further
discussion ... we will return to them when
they are relevant

02/01/11

Summary of Key Points

Amdahl’s Law is a fact but it doesn’t impede
us much

Inherently sequential problems (probably)
exist, but they don’t impede us either
Latency hiding could hide the impact of A
with sufficiently many threads and much
(interconnection) bandwidth

Impediments to parallel speedup are
numerous: overhead, contention, inherently
sequential code, waiting time, etc.

02/01/11

Review Key Points (continued)

Concerns while parallel programming are also
numerous: locality, granularity, dependences
(both true and false), load balance, etc.
Happily: Parallel and sequential computers
are different: More hardware means more
fast memory (cache, RAM), implying the
possibility of superlinear speedup

Measuring improvement is complicated

02/01/11

