
Motivation:

Relational Data Model is quite rigid. … powerful, but rigid.

With the explosive growth of the Internet, electronic
information is all around us, and tends not to be
warehoused, centrally located, or conforming to a rigid set
of relations along with their interrelationships.

Information is more dynamic, and information interchange
(data exchange between applications) becomes the focus.
The goal is to allow an apparent integration of data and/or
databases from multiple sources.

When we wish to exchange data between entities, the data
forms and formats may not be identical. The medium for
information exchange becomes what is termed
"semistructured data" -- a new data model designed to
cope with problems of information integration.

XML is a standard language for describing semistructured
data schemas and representing data.

Some of the problems

• Related data exists in many places and could, in principle, work
together.

• But different databases differ in:
1. Model (relational, object-oriented?).
2. Schema (normalized/unnormalized?).
3. Terminology: are consultants employees? Retirees?

Subcontractors?
4. Conventions (meters versus feet?).

Example:
• Every bar has a database.

• One may use a relational DBMS; another keeps the menu in
an MS-Word document.

• One stores the phones of distributors, another does not.
• One distinguishes ales from other beers, another doesn’t.
• One counts beer inventory by bottles, another by cases.

XML Tuesday, April 27, 2004
8:43 AM

 Lectures Desktop - 2 (C) Page 1

Two Approaches to Integration
1. Warehousing : Make copies of the data

sources at a central site and transform it to
a common schema.

Reconstruct data daily/weekly, but do not try to
keep it more up-to-date than that.

2. Mediation : Create a view of all sources, as
if they were integrated.

Answer a view query by translating it to
terminology of the sources and querying them.

Warehouse

Wrapper Wrapper

Source 1 Source 2

Mediator

Wrapper Wrapper

Source 1 Source 2

User queryUser query

Query
Query

QueryQuery

Query
Query

QueryQuery

Result

Result

Result

Result

Result

Result

Result

Result

ResultResult

Semistructured Data Model

Purpose: represent data from
independent sources more flexibly than
either relational or object-oriented
models.
Think of objects, but with the type of
each object its own business, not that
of its “class.”
Labels to indicate meaning of
substructures.

Think of Semistructured Data as a Graph

 Lectures Desktop - 2 (C) Page 2

Nodes = objects.
Labels on arcs (attributes, relationships).
Atomic values at leaf nodes (nodes with
no arcs out).
Flexibility: no restriction on:

Labels out of a node.
Number of successors with a given label.

Bud

A.B.

Gold1995

MapleJoe’s

M’lob

beer beer
bar

manfmanf

servedAt

name

name
name

addr

prize

year award

root

The bar object
for Joe’s Bar
The bar object
for Joe’s Bar

The beer object
for Bud
The beer object
for Bud

Notice a
new kind
of data.

Notice a
new kind
of data.

XML as a language for specifying semistructured data

XML = Extensible Markup Language.
While HTML uses tags for formatting
(e.g., “italic”), XML uses tags for
semantics (e.g., “this is an address”).
Key idea: create tag sets for a domain
(e.g., genomics), and translate all data
into properly tagged XML documents.

Well-Formed XML allows you to invent
your own tags.

Similar to labels in semistructured data.

Valid XML involves a DTD (Document
Type Definition), which limits the labels
and gives a grammar for their use.

 Lectures Desktop - 2 (C) Page 3

Start the document with a declaration,
surrounded by <? … ?> .
Normal declaration is:

<? XML VERSION = “1.0”
STANDALONE = “yes” ?>

“Standalone” = “no DTD provided.”
Balance of document is a root tag
surrounding nested tags.

Tags, as in HTML, are normally
matched pairs, as <FOO> … </FOO> .
Tags may be nested arbitrarily.
Tags requiring no matching ender, like
<P> in HTML, are also permitted.

<? XML VERSION = “1.0” STANDALONE = “yes” ?>
<BARS>

<BAR><NAME>Joe’s Bar</NAME>
<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> …

</BARS>

The <BARS> XML document is:

Joe’s Bar

Bud 2.50 Miller 3.00

PRICE

BAR
BAR

BARS

NAME . . .

BAR

PRICENAME

BEER
BEER

NAME

• Another Example (from textbook)

 Lectures Desktop - 2 (C) Page 4

Grammar for specifying "Valid XML"

… that is, XML conforming to a schema

Two "flavors"

•

<bank-1>
<customer>

<customer-name> Hayes </customer-name>
<customer-street> Main </customer-street>
<customer-city> Harrison </customer-city>
<account>

<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>

</account>
<account>

…
</account>

</customer>
.
.

</bank-1>

Nesting of data is useful in data transfer
Example: elements representing customer-id, customer name, and
address nested within an order element

Nesting is not supported, or discouraged, in relational databases
With multiple orders, customer name and address are stored
redundantly
normalization replaces nested structures in each order by foreign key
into table storing customer name and address information
Nesting is supported in object-relational databases

But nesting is appropriate when transferring data
External application does not have direct access to data referenced
by a foreign key

Mixture of text with sub-elements is legal in XML.
Example:
<account>

This account is seldom used any more.
<account-number> A-102</account-number>
<branch-name> Perryridge</branch-name>
<balance>400 </balance>

</account>
Useful for document markup, but discouraged for data
representation

 Lectures Desktop - 2 (C) Page 5

Two "flavors"
Document Type Definition (DTD)

Widely used
XML Schema

Newer, and with increasing use

DTDs

• Essentially a context-free grammar for describing XML tags and their
nesting.

• Each domain of interest (e.g., electronic components, bars-beers-
drinkers) creates one DTD that describes all the documents this group will
share.

<!DOCTYPE <root tag> [
<!ELEMENT <name> (<components>)
<more elements>

]>

The description of an element consists
of its name (tag), and a parenthesized
description of any nested tags.

Includes order of subtags and their
multiplicity.

Leaves (text elements) have #PCDATA
in place of nested tags.

Example:

<!DOCTYPE Bars [
<!ELEMENT BARS (BAR*)>
<!ELEMENT BAR (NAME, BEER+)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT BEER (NAME, PRICE)>
<!ELEMENT PRICE (#PCDATA)>

]>

A BARS object has
zero or more BAR’s
nested within.

A BARS object has
zero or more BAR’s
nested within.

A BAR has one
NAME and one
or more BEER
subobjects.

A BAR has one
NAME and one
or more BEER
subobjects.

A BEER has a
NAME and a
PRICE.

A BEER has a
NAME and a
PRICE.

NAME and PRICE
are text.
NAME and PRICE
are text.

 Lectures Desktop - 2 (C) Page 6

Subtags must appear in order shown.
A tag may be followed by a symbol to
indicate its multiplicity.

* = zero or more.
+ = one or more.
? = zero or one.

Symbol | can connect alternative
sequences of tags.

A name is an optional title (e.g., “Prof.”),
a first name, and a last name, in that
order, or it is an IP address:

<!ELEMENT NAME (
(TITLE?, FIRST, LAST) | IPADDR

)>

To use DTDs

1. Set STANDALONE = "no"
2. Either

a. Include the DTD as a preamble of the XML document, or
b. Follow DOCTYPE and the <root tag> by SYSTEM and a

path to the file where the DTD can be found.

<? XML VERSION = “1.0” STANDALONE = “no” ?>
<!DOCTYPE Bars [

<!ELEMENT BARS (BAR*)>
<!ELEMENT BAR (NAME, BEER+)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT BEER (NAME, PRICE)>
<!ELEMENT PRICE (#PCDATA)>

]>
<BARS>

<BAR><NAME>Joe’s Bar</NAME>
<BEER><NAME>Bud</NAME> <PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME> <PRICE>3.00</PRICE></BEER>

</BAR>
<BAR> …

</BARS>

The DTDThe DTD

The documentThe document

 Lectures Desktop - 2 (C) Page 7

Assume the BARS DTD is in file bar.dtd.
<? XML VERSION = “1.0” STANDALONE = “no” ?>
<!DOCTYPE Bars SYSTEM “bar.dtd”>
<BARS>

<BAR><NAME>Joe’s Bar</NAME>
<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> …

</BARS>

Get the DTD
from the file
bar.dtd

Get the DTD
from the file
bar.dtd

Opening tags in XML can have
attributes, like in
HTML.
In a DTD,

<!ATTLIST <element name>… >

gives a list of attributes and their
datatypes for this element.
Bars can have an attribute kind, which
is either sushi, sports, or “other.”

<!ELEMENT BAR (NAME BEER*)>
<!ATTLIST BAR kind = “sushi” |

“sports” | “other”>

ID's and IDREF's

These are pointers from one object to
another, in analogy to HTML’s
NAME = “foo” and HREF = “#foo”.
Allows the structure of an XML
document to be a general graph, rather
than just a tree.

Creating ID's

 Lectures Desktop - 2 (C) Page 8

Give an element E an attribute A of
type ID.
When using tag <E > in an XML
document, give its attribute A a unique
value.
Example:

<E A = “xyz”>

Creating IDREF's

To allow objects of type F to refer to
another object with an ID attribute,
give F an attribute of type IDREF.
Or, let the attribute have type IDREFS,
so the F –object can refer to any
number of other objects.

Example

Let’s redesign our BARS DTD to include both
BAR and BEER subelements.
Both bars and beers will have ID attributes
called name.
Bars have PRICE subobjects, consisting of a
number (the price of one beer) and an IDREF
theBeer leading to that beer.
Beers have attribute soldBy, which is an
IDREFS leading to all the bars that sell it.

The DTD

 Lectures Desktop - 2 (C) Page 9

<!DOCTYPE Bars [
<!ELEMENT BARS (BAR*, BEER*)>
<!ELEMENT BAR (PRICE+)>

<!ATTLIST BAR name = ID>
<!ELEMENT PRICE (#PCDATA)>

<!ATTLIST PRICE theBeer = IDREF>
<!ELEMENT BEER ()>

<!ATTLIST BEER name = ID, soldBy = IDREFS>
]>

The Example Object

<BARS>
<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
<BEER name = “Bud”, soldBy = “JoesBar,

SuesBar,…”>
</BEER> …

</BARS>

 Lectures Desktop - 2 (C) Page 10

