
Motivation:

Relational Data Model is quite rigid. … powerful, but rigid.

With the explosive growth of the Internet, electronic
information is all around us, and tends not to be
warehoused, centrally located, or conforming to a rigid set
of relations along with their interrelationships.

Information is more dynamic, and information interchange
(data exchange between applications) becomes the focus.
The goal is to allow an apparent integration of data and/or
databases from multiple sources.

When we wish to exchange data between entities, the data
forms and formats may not be identical. The medium for
information exchange becomes what is termed
"semistructured data" -- a new data model designed to
cope with problems of information integration.

XML is a standard language for describing semistructured
data schemas and representing data.

Some of the problems

• Related data exists in many places and could, in principle, work
together.

• But different databases differ in:
1. Model (relational, object-oriented?).
2. Schema (normalized/unnormalized?).
3. Terminology: are consultants employees? Retirees?

Subcontractors?
4. Conventions (meters versus feet?).

Example:
• Every bar has a database.

• One may use a relational DBMS; another keeps the menu in
an MS-Word document.

• One stores the phones of distributors, another does not.
• One distinguishes ales from other beers, another doesn’t.
• One counts beer inventory by bottles, another by cases.

XML Tuesday, April 27, 2004
8:43 AM

 Lectures Desktop - 2 (C) Page 1

Two Approaches to Integration
1. Warehousing : Make copies of the data

sources at a central site and transform it to
a common schema.

Reconstruct data daily/weekly, but do not try to
keep it more up-to-date than that.

2. Mediation : Create a view of all sources, as
if they were integrated.

Answer a view query by translating it to
terminology of the sources and querying them.

Warehouse

Wrapper Wrapper

Source 1 Source 2

Mediator

Wrapper Wrapper

Source 1 Source 2

User queryUser query

Query
Query

QueryQuery

Query
Query

QueryQuery

Result

Result

Result

Result

Result

Result

Result

Result

ResultResult

Semistructured Data Model

Purpose: represent data from
independent sources more flexibly than
either relational or object-oriented
models.
Think of objects, but with the type of
each object its own business, not that
of its “class.”
Labels to indicate meaning of
substructures.

Think of Semistructured Data as a Graph

 Lectures Desktop - 2 (C) Page 2

Nodes = objects.
Labels on arcs (attributes, relationships).
Atomic values at leaf nodes (nodes with
no arcs out).
Flexibility: no restriction on:

Labels out of a node.
Number of successors with a given label.

Bud

A.B.

Gold1995

MapleJoe’s

M’lob

beer beer
bar

manfmanf

servedAt

name

name
name

addr

prize

year award

root

The bar object
for Joe’s Bar
The bar object
for Joe’s Bar

The beer object
for Bud
The beer object
for Bud

Notice a
new kind
of data.

Notice a
new kind
of data.

XML as a language for specifying semistructured data

XML = Extensible Markup Language.
While HTML uses tags for formatting
(e.g., “italic”), XML uses tags for
semantics (e.g., “this is an address”).
Key idea: create tag sets for a domain
(e.g., genomics), and translate all data
into properly tagged XML documents.

Well-Formed XML allows you to invent
your own tags.

Similar to labels in semistructured data.

Valid XML involves a DTD (Document
Type Definition), which limits the labels
and gives a grammar for their use.

 Lectures Desktop - 2 (C) Page 3

Start the document with a declaration,
surrounded by <? … ?> .
Normal declaration is:

<? XML VERSION = “1.0”
STANDALONE = “yes” ?>

“Standalone” = “no DTD provided.”
Balance of document is a root tag
surrounding nested tags.

Tags, as in HTML, are normally
matched pairs, as <FOO> … </FOO> .
Tags may be nested arbitrarily.
Tags requiring no matching ender, like
<P> in HTML, are also permitted.

<? XML VERSION = “1.0” STANDALONE = “yes” ?>
<BARS>

<BAR><NAME>Joe’s Bar</NAME>
<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> …

</BARS>

The <BARS> XML document is:

Joe’s Bar

Bud 2.50 Miller 3.00

PRICE

BAR
BAR

BARS

NAME . . .

BAR

PRICENAME

BEER
BEER

NAME

 Lectures Desktop - 2 (C) Page 4

