
Multiple transactions are allowed to run concurrently in the
system. Advantages are:

increased processor and disk utilization, leading to better
transaction throughput: one transaction can be using the CPU
while another is reading from or writing to the disk
reduced average response time for transactions: short
transactions need not wait behind long ones.

Concurrency control schemes – mechanisms to achieve
isolation, i.e., to control the interaction among the
concurrent transactions in order to prevent them from
destroying the consistency of the database

Schedules – sequences that indicate the chronological order in
which instructions of concurrent transactions are executed

a schedule for a set of transactions must consist of all instructions of
those transactions
must preserve the order in which the instructions appear in each
individual transaction.

Serial Schedule Equivalent Schedule

Concurrent Transactions Monday, April 26, 2004
8:49 AM

 Lectures Desktop - 2 (C) Page 1

Inconsistent Schedule

Serializability

Basic Assumption – Each transaction preserves database
consistency.
Thus serial execution of a set of transactions preserves
database consistency.
A (possibly concurrent) schedule is serializable if it is
equivalent to a serial schedule. Different forms of schedule
equivalence give rise to the notions of:
1. conflict serializability
2. view serializability

We ignore operations other than read and write instructions,
and we assume that transactions may perform arbitrary
computations on data in local buffers in between reads and
writes. Our simplified schedules consist of only read and
write instructions.

Conflict Serializability

 Lectures Desktop - 2 (C) Page 2

Instructions li and lj of transactions Ti and Tj respectively, conflict
if and only if there exists some item Q accessed by both li and lj,
and at least one of these instructions wrote Q.
1. li = read(Q), lj = read(Q). li and lj don’t conflict.
2. li = read(Q), lj = write(Q). They conflict.
3. li = write(Q), lj = read(Q). They conflict
4. li = write(Q), lj = write(Q). They conflict
Intuitively, a conflict between li and lj forces a (logical) temporal
order between them. If li and lj are consecutive in a schedule
and they do not conflict, their results would remain the same
even if they had been interchanged in the schedule.

If a schedule S can be transformed into a schedule S´ by a
series of swaps of non-conflicting instructions, we say that
S and S´ are conflict equivalent.
We say that a schedule S is conflict serializable if it is
conflict equivalent to a serial schedule
Example of a schedule that is not conflict serializable:

T3 T4
read(Q)

write(Q)
write(Q)

We are unable to swap instructions in the above schedule
to obtain either the serial schedule < T3, T4 >, or the serial
schedule < T4, T3 >.

Schedule 3 below can be transformed into Schedule 1, a
serial schedule where T2 follows T1, by series of swaps of
non-conflicting instructions. Therefore Schedule 3 is conflict
serializable.

 Lectures Desktop - 2 (C) Page 3

View Serializability

Let S and S´ be two schedules with the same set of
transactions. S and S´ are view equivalent if the following
three conditions are met:
1. For each data item Q, if transaction Ti reads the initial value of Q in

schedule S, then transaction Ti must, in schedule S´, also read the
initial value of Q.

2. For each data item Q if transaction Ti executes read(Q) in schedule
S, and that value was produced by transaction Tj (if any), then
transaction Ti must in schedule S´ also read the value of Q that
was produced by transaction Tj .

3. For each data item Q, the transaction (if any) that performs the final
write(Q) operation in schedule S must perform the final write(Q)
operation in schedule S´.

As can be seen, view equivalence is also based purely on reads
and writes alone.

A schedule S is view serializable it is view equivalent to a serial
schedule.
Every conflict serializable schedule is also view serializable.
Schedule 9 (from text) — a schedule which is view-serializable
but not conflict serializable.
Every view serializable schedule that is not conflict
serializable has blind writes.

Lock-Based Protocols
See Chapter 16,

A lock is a mechanism to control concurrent access to a data item
Data items can be locked in two modes :
1. exclusive (X) mode. Data item can be both read as well as

written. X-lock is requested using lock-X instruction.
2. shared (S) mode. Data item can only be read. S-lock is

requested using lock-S instruction.
Lock requests are made to concurrency-control manager.
Transaction can proceed only after request is granted.

 Lectures Desktop - 2 (C) Page 4

• A transaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions

• Any number of transactions can hold shared locks on an item, but if any
transaction holds an exclusive on the item no other transaction may hold
any lock on the item.

• If a lock cannot be granted, the requesting transaction is made to wait till all
incompatible locks held by other transactions have been released. The
lock is then granted.

Example of a transaction performing locking:
T2: lock-S(A);

read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)

Locking as above is not sufficient to guarantee serializability — if A and B
get updated in-between the read of A and B, the displayed sum would be
wrong.
A locking protocol is a set of rules followed by all transactions while
requesting and releasing locks. Locking protocols restrict the set of
possible schedules.

 Lectures Desktop - 2 (C) Page 5

Neither T3 nor T4 can make progress — executing lock-S(B)
causes T4 to wait for T3 to release its lock on B, while executing
lock-X(A) causes T3 to wait for T4 to release its lock on A.
Such a situation is called a deadlock.

To handle a deadlock one of T3 or T4 must be rolled back
and its locks released.

The potential for deadlock exists in most locking protocols.
Deadlocks are a necessary evil.
Starvation is also possible if concurrency control manager is
badly designed. For example:

A transaction may be waiting for an X-lock on an item, while a
sequence of other transactions request and are granted an S-lock
on the same item.
The same transaction is repeatedly rolled back due to deadlocks.

Concurrency control manager can be designed to prevent
starvation.

Two-Phase Locking Protocol

This is a protocol which ensures conflict-serializable schedules.
Phase 1: Growing Phase

transaction may obtain locks
transaction may not release locks

Phase 2: Shrinking Phase
transaction may release locks
transaction may not obtain locks

The protocol assures serializability. It can be proved that the
transactions can be serialized in the order of their lock points
(i.e. the point where a transaction acquired its final lock).

Two-phase locking does not ensure freedom from deadlocks

Cascading roll-back is possible under two-phase locking. To
avoid this, follow a modified protocol called strict two-phase
locking. Here a transaction must hold all its exclusive locks till it
commits/aborts.

Rigorous two-phase locking is even stricter: here all locks are
held till commit/abort. In this protocol transactions can be
serialized in the order in which they commit.

 Lectures Desktop - 2 (C) Page 6

There can be conflict serializable schedules that cannot be
obtained if two-phase locking is used.
However, in the absence of extra information (e.g., ordering of
access to data), two-phase locking is needed for conflict
serializability in the following sense:
Given a transaction Ti that does not follow two-phase locking, we
can find a transaction Tj that uses two-phase locking, and a
schedule for Ti and Tj that is not conflict serializable.

Can allow lock conversions

Two-phase locking with lock conversions:

– First Phase:
can acquire a lock-S on item
can acquire a lock-X on item
can convert a lock-S to a lock-X (upgrade)

– Second Phase:
can release a lock-S
can release a lock-X
can convert a lock-X to a lock-S (downgrade)

This protocol assures serializability. But still relies on the
programmer to insert the various locking instructions.

 Lectures Desktop - 2 (C) Page 7

