
Table of Contents -- sequential storage order

Index -- based on key terms, find random access to specific 
items

Also, analogy of card catalog

Indexing mechanisms used to speed up access to desired data.
E.g., author catalog in library

Search Key - attribute to set of attributes used to look up 
records in a file.
An index file consists of records (called index entries) of the 
form

Index files are typically much smaller than the original file 
Two basic kinds of indices:

Ordered indices:  search keys are stored in sorted order
Hash indices: search keys are distributed uniformly across 
“buckets” using a “hash function”. 

search-key pointer

Access types supported efficiently.  E.g., 
records with a specified value in the attribute
or records with an attribute value falling in a specified range of 
values.

Access time
Insertion time
Deletion time
Space overhead

Metrics for Evaluation

In an ordered index, index entries are stored sorted on the 
search key value.  E.g., author catalog in library.
Primary index: in a sequentially ordered file, the index whose 
search key specifies the sequential order of the file.

Also called clustering index
The search key of a primary index is usually but not necessarily the 
primary key.

Secondary index: an index whose search key specifies an order 
different from the sequential order of the file.  Also called 
non-clustering index.
Index-sequential file: ordered sequential file with a primary index.

Indexing techniques evaluated on basis of:

Ordered Indices Search Key -- may be different from 
primary key

Indexing and Hashing Wednesday, March 31, 2004
9:48 AM

   Lectures Desktop (C) Page 1



Dense index — Index record appears for every search-key value 
in the file. 

Sparse Index:  contains index records for only some search-key 
values.

Applicable when records are sequentially ordered on search-key

To locate a record with search-key value K we:
Find index record with largest search-key value < K
Search file sequentially starting at the record to which the index 
record points

Less space and less maintenance overhead for insertions and 
deletions.
Generally slower than dense index for locating records.
Good tradeoff: sparse index with an index entry for every block in 
file, corresponding to least search-key value in the block.

Sequential File

20
10
20
10

40
30
40
30

60
50
60
50

80
70
80
70

100
90
100
90

Build a dense index

   Lectures Desktop (C) Page 2



If primary index does not fit in memory, access becomes 
expensive.
To reduce number of disk accesses to index records, treat 
primary index kept on disk as a sequential file and construct a 
sparse index on it.

outer index – a sparse index of primary index
inner index – the primary index file

If even outer index is too large to fit in main memory, yet another 
level of index can be created, and so on.
Indices at all levels must be updated on insertion or deletion from 
the file.

Multilevel Index

Sequential File

20
10
20
10

40
30
40
30

60
50
60
50

80
70
80
70

100
90
100
90

Build a sparse index

Sequential File

Build a Second-Level Index

   Lectures Desktop (C) Page 3



If deleted record was the only record in the file with its particular 
search-key value, the search-key is deleted from the index also.
Single-level index deletion:

Dense indices – deletion of search-key is similar to file record 
deletion.
Sparse indices – if an entry for the search key exists in the index, it 
is deleted by replacing the entry in the index with the next search-
key value in the file (in search-key order).  If the next search-key 
value already has an index entry, the entry is deleted instead of 
being replaced.

Index Record Deletion

Single-level index insertion:
Perform a lookup using the search-key value appearing in the 
record to be inserted.
Dense indices – if the search-key value does not appear in the 
index, insert it.
Sparse indices – if index stores an entry for each block of the file, no 
change needs to be made to the index unless a new block is 
created.  In this case, the first search-key value appearing in the 
new block is inserted into the index.

Multilevel insertion (as well as deletion) algorithms are simple
extensions of the single-level algorithms

Insertion

Sequential File

20
10
20
10

40
30
40
30

60
50
60
50

80
70
80
70

100
90
100
90

10
30
50
70

10
30
10
30
50
70
50
70

90
110
130
150

90
110
90
110
130
150
130
150

170
190
210
230

170
190
170
190
210
230
210
230

   Lectures Desktop (C) Page 4



20
10
20
10

40
30
40
30

60
50
60
50

80
70
80
70

10
30
50
70

90
110
130
150

20
10
20
10

40
30
40
30

60
50
60
50

80
70
80
70

10
30
50
70

90
110
130
150

– delete record 40

20
10
20
10

40
30
40
30

60
50
60
50

80
70
80
70

10
30
50
70

90
110
130
150

– delete record 30

40
40

4040
40

20
10
20
10

40
30
40
30

60
50
60
50

80
70
80
70

10
30
50
70

90
110
130
150

– delete records 30 & 40

50
70
50
70

   Lectures Desktop (C) Page 5    



Frequently, one wants to find all the records whose 
values in a certain field (which is not the search-key of 
the primary index satisfy some condition.

Example 1: In the account database stored sequentially 
by account number, we may want to find all accounts in a 
particular branch
Example 2: as above, but where we want to find all 
accounts with a specified balance or range of balances

We can have a secondary index with an index record 
for each search-key value; index record points to a 
bucket that contains pointers to all the actual records 
with that particular search-key value.

Secondary Indices

Secondary indices have to be dense.
Indices offer substantial benefits when searching for records.
When a file is modified, every index on the file must be updated, 
Updating indices imposes overhead on database modification.
Sequential scan using primary index is efficient, but a sequential 
scan using a secondary index is expensive 

each record access may fetch a new block from disk

Sequence
field

50
30
50
30

70
20
70
20

40
80
40
80

10
100
10
100

60
90
60
90

• Dense index
10
20
30
40

50
60
70
...

10
20
30
40

10
20
30
40

50
60
70
...

50
60
70
...

10
50
90
...

sparse
high
level

10
50
90
...

10
50
90
...

sparse
high
level

   Lectures Desktop (C) Page 6



Conventional indexes

Advantage:
- Simple
- Index is sequential file

good for scans

Disadvantage:
- Inserts expensive, and/or
- Lose sequentiality & balance

Solution:  Use a more general data structure that allows us to 
enforce balance and has good insertion/deletion characteristics

-- The B+ tree

• Automatically maintain as many levels of index as is appropriate 
for the size of the file being indexed

• Block space management ensures that every block is between 
half and completely full.  No overflow blocks are needed.

B-tree properties

• All paths from root to leaf have same length
• Every block has space for n search keys and n+1 pointers
• The keys in leaf nodes are copies of keys from the data file.  

These keys are distributed among the leaves in sorted order, 
from left to right.

• At the root, there are at least two used pointers.  All pointers 
point to B-tree blocks at the level below.

• At a leaf, the last pointer points to the next leaf block to the 
right.  At least floor((n+1)/2)) point to data blocks.

• At interior nodes, all n+1 pointers can be used to point to B-
tree blocks

Root

10
0

12
0

15
0

18
0

30

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

57 81 95

Sample non-leaf node

   Lectures Desktop (C) Page 7



to keys to keys to keys  to keys

< 57 57≤ k<81 81≤k<95 ≥95

57 81 95

From non-leaf node

to next leaf
in sequence57 81 95

To
 r

ec
or

d 
w

ith
 k

ey
 5

7
To

 r
ec

or
d 

w
ith

 k
ey

 8
1

To
 r

ec
or

d 
w

ith
 k

ey
 8

5

Sample leaf node

• Use at least

Non-leaf: ⎡(n+1)/2⎤ pointers

Leaf: ⎣(n+1)/2⎦ pointers to data

Full node min. node

Non-leaf

Leaf
12

0
15

0
18

0

30

3 5 11 30 35

co
un

ts
 e

ve
n 

if 
nu

ll

Insert into B+tree

(a) simple case
– space available in leaf

(b) leaf overflow
(c) non-leaf overflow
(d) new root

(a) Insert key = 32

3 5 11 30 31

30

10
0

3232 3 5 11 30 31

30

10
0

3 5

7

3 5

7

77

(b) Insert key = 7

10
0

16
0

16
0

(c) Insert key = 160

   Lectures Desktop (C) Page 8



10
0

12
0

15
0

18
0

15
0

15
6

17
9

18
0

20
0

16
0

16
0

18
0

18
0

16
0

17
9

16
0

17
9

16
0

17
9

10 20 30

1 2 3 10 12 20 25 30 32 40 40 4540 45

4040

30new root 30new root

(d) New root, insert 45

   Lectures Desktop (C) Page 9


