
Must use an index and/or binary search to locate data

File organization based on hashing allow us to avoid
accessing an index structure.

Also provides a way to construct indices.

Disadvantages of Sequential File Organization

A bucket is a unit of storage containing one or more records (a
bucket is typically a disk block).
In a hash file organization we obtain the bucket of a record
directly from its search-key value using a hash function.
Hash function h is a function from the set of all search-key
values K to the set of all bucket addresses B.
Hash function is used to locate records for access, insertion as
well as deletion.
Records with different search-key values may be mapped to
the same bucket; thus entire bucket has to be searched
sequentially to locate a record.

key → h(key) <key>

...

Buckets
(typically 1
disk block)

Hash Indexing Friday, April 09, 2004
11:33 AM

 Lectures Desktop (C) Page 1

.

Bank Account Example

There are 10 buckets,
The binary representation of the ith character is assumed to
be the integer i.
The hash function returns the sum of the binary
representations of the characters modulo 10

E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) = 3

Worst has function maps all search-key values to the same
bucket; this makes access time proportional to the number of
search-key values in the file.
An ideal hash function is uniform, i.e., each bucket is assigned
the same number of search-key values from the set of all
possible values.
Ideal hash function is random, so each bucket will have the
same number of records assigned to it irrespective of the actual
distribution of search-key values in the file.
Typical hash functions perform computation on the internal
binary representation of the search-key.

For example, for a string search-key, the binary representations of
all the characters in the string could be added and the sum modulo
the number of buckets could be returned. .

Hash Functions

 Lectures Desktop (C) Page 2

Bucket Overflow

• Key = ‘x1 x2 … xn’ n byte character
string

• Have b buckets
• h: add x1 + x2 + ….. xn

– compute sum modulo b

Example with 2 records per bucket

INSERT:
h(a) = 1
h(b) = 2
h(c) = 1
h(d) = 0

0

1

2

3

Insert

h(e) = 1 e
f
c

Delete

 Lectures Desktop (C) Page 3

Bucket overflow can occur because of
Insufficient buckets
Skew in distribution of records. This can occur due to two
reasons:

multiple records have same search-key value
chosen hash function produces non-uniform distribution of key
values

Although the probability of bucket overflow can be reduced, it
cannot be eliminated; it is handled by using overflow buckets.

Overflow chaining – the overflow buckets of a given bucket are
chained together in a linked list.
Above scheme is called closed hashing.

An alternative, called open hashing, which does not use overflow
buckets, is not suitable for database applications.

What about secondary indices, or cases where the file

 Lectures Desktop (C) Page 4

organization may already be sequential?

Use Hash Indices ...

Hashing can be used not only for file organization, but also for
index-structure creation.
A hash index organizes the search keys, with their associated
record pointers, into a hash file structure.
Strictly speaking, hash indices are always secondary indices

if the file itself is organized using hashing, a separate primary hash
index on it using the same search-key is unnecessary.
However, we use the term hash index to refer to both secondary
index structures and hash organized files.

Hash Index Example

 Lectures Desktop (C) Page 5

What are the deficiencies of static hashing?

In static hashing, function h maps search-key values to a fixed
set of B of bucket addresses.

Databases grow with time. If initial number of buckets is too small,
performance will degrade due to too much overflows.
If file size at some point in the future is anticipated and number of
buckets allocated accordingly, significant amount of space will be
wasted initially.
If database shrinks, again space will be wasted.
One option is periodic re-organization of the file with a new hash
function, but it is very expensive.

These problems can be avoided by using techniques that allow
the number of buckets to be modified dynamically.

Thus, the topic of dynamic hashing ...

 Lectures Desktop (C) Page 6

Good for database that grows and shrinks in size
Allows the hash function to be modified dynamically
Extendable (aka extensible) hashing – one form of dynamic
hashing

Hash function generates values over a large range — typically b-bit
integers, with b = 32.
At any time use only a prefix of the hash function to index into a
table of bucket addresses.
Let the length of the prefix be i bits, 0 ≤ i ≤ 32.

Bucket address table size = 2i. Initially i = 0
Value of i grows and shrinks as the size of the database grows and
shrinks.
Multiple entries in the bucket address table may point to a bucket.

Thus, actual number of buckets is < 2i

The number of buckets also changes dynamically due to
coalescing and splitting of buckets.

So two ideas combine in extendable hashing:

(a) Use i of b bits output by hash function
b

h(K) →

use i → grows over time….

00110101

 Lectures Desktop (C) Page 7

(b) Use directory

h(K)[i] to bucket
...

...

Example: h(k) is 4 bits; 2 keys per bucket

Directory Buckets

i = 1 1

11

0001

1001
1100

Track the number of bits
used in placement within
this bucket

Insert 1010

 Lectures Desktop (C) Page 8

Insert:

0111

0000

00

01

10

11

2i =

21001
1010

21001
1010

21100 21100

20111

20000
0001

Insert:

1001

 Lectures Desktop (C) Page 9

Extensible hashing: deletion

• No merging of blocks
• Merge blocks

and cut directory if possible
(Reverse insert procedure)

 Lectures Desktop (C) Page 10

