
A L T E R N A T I V E I / O M O D E L S

This chapter discusses three alternatives to the conventional file I/O model that we
have employed in most programs shown in this book:

z I/O multiplexing (the select() and poll() system calls);

z signal-driven I/O; and

z the Linux-specific epoll API.

63.1 Overview
Most of the programs that we have presented so far in this book employ an I/O
model under which a process performs I/O on just one file descriptor at a time,
and each I/O system call blocks until the data is transferred. For example, when
reading from a pipe, a read() call normally blocks if no data is currently present in
the pipe, and a write() call blocks if there is insufficient space in the pipe to hold the
data to be written. Similar behavior occurs when performing I/O on various other
types of files, including FIFOs and sockets.

1326 Chapter 63

Disk files are a special case. As described in Chapter 13, the kernel employs the
buffer cache to speed disk I/O requests. Thus, a write() to a disk returns as
soon as the requested data has been transferred to the kernel buffer cache,
rather than waiting until the data is written to disk (unless the O_SYNC flag was
specified when opening the file). Correspondingly, a read() transfers data from
the buffer cache to a user buffer, and if the required data is not in the buffer
cache, then the kernel puts the process to sleep while a disk read is performed.

The traditional blocking I/O model is sufficient for many applications, but not all.
In particular, some applications need to able to do one or both of the following:

z Check whether I/O is possible on a file descriptor without blocking if it is not
possible.

z Monitor multiple file descriptors to see if I/O is possible on any of them.

We have already encountered two techniques that can be used to partially address
these needs: nonblocking I/O and the use of multiple processes or threads.

We described nonblocking I/O in some detail in Sections 5.9 and 44.9. If we
place a file descriptor in nonblocking mode by enabling the O_NONBLOCK open file sta-
tus flag, then an I/O system call that can’t be immediately completed returns an
error instead of blocking. Nonblocking I/O can be employed with pipes, FIFOs,
sockets, terminals, pseudoterminals, and some other types of devices.

Nonblocking I/O allows us to periodically check (“poll”) whether I/O is possible
on a file descriptor. For example, we can make an input file descriptor nonblocking,
and then periodically perform nonblocking reads. If we need to monitor multiple file
descriptors, then we mark them all nonblocking, and poll each of them in turn.
However, polling in this manner is usually undesirable. If polling is done only infre-
quently, then the latency before an application responds to an I/O event may be
unacceptably long; on the other hand, polling in a tight loop wastes CPU time.

In this chapter, we use the word poll in two distinct ways. One of these is as the
name of the I/O multiplexing system call, poll(). In the other use, we mean
“performing a nonblocking check on the status of a file descriptor.”

If we don’t want a process to block when performing I/O on a file descriptor, we
can instead create a new process to perform the I/O. The parent process can then
carry on to perform other tasks, while the child process blocks until the I/O is
complete. If we need to handle I/O on multiple file descriptors, we can create one
child for each descriptor. The problems with this approach are expense and com-
plexity. Creating and maintaining processes places a load on the system, and, typi-
cally, the child processes will need to use some form of IPC to inform the parent
about the status of I/O operations.

Using multiple threads instead of processes is less demanding of resources, but
the threads will probably still need to communicate information to one another
about the status of I/O operations, and the programming can be complex, especially
if we are using thread pools to minimize the number of threads used to handle
large numbers of simultaneous clients. (One place where threads can be particularly
useful is if the application needs to call a third-party library that performs blocking
I/O. An application can avoid blocking in this case by making the library call in a
separate thread.)

Al ternat ive I/O Models 1327

Because of the limitations of both nonblocking I/O and the use of multiple
threads or processes, one of the following alternatives is often preferable:

z I/O multiplexing allows a process to simultaneously monitor multiple file descrip-
tors to find out whether I/O is possible on any of them. The select() and poll()
system calls perform I/O multiplexing.

z Signal-driven I/O is a technique whereby a process requests that the kernel send
it a signal when input is available or data can be written on a specified file
descriptor. The process can then carry on performing other activities, and is
notified when I/O becomes possible via receipt of the signal. When monitor-
ing large numbers of file descriptors, signal-driven I/O provides significantly
better performance than select() and poll().

z The epoll API is a Linux-specific feature that first appeared in Linux 2.6. Like
the I/O multiplexing APIs, the epoll API allows a process to monitor multiple
file descriptors to see if I/O is possible on any of them. Like signal-driven I/O,
the epoll API provides much better performance when monitoring large num-
bers of file descriptors.

In the remainder of this chapter, we’ll generally frame the discussion of the
above techniques in terms of processes. However, these techniques can also be
employed in multithreaded applications.

In effect, I/O multiplexing, signal-driven I/O, and epoll are all methods of achiev-
ing the same result—monitoring one or, commonly, several file descriptors simulta-
neously to see if they are ready to perform I/O (to be precise, to see whether an I/O
system call could be performed without blocking). The transition of a file descrip-
tor into a ready state is triggered by some type of I/O event, such as the arrival of
input, the completion of a socket connection, or the availability of space in a previ-
ously full socket send buffer after TCP transmits queued data to the socket peer.
Monitoring multiple file descriptors is useful in applications such as network serv-
ers that must simultaneously monitor multiple client sockets, or applications that
must simultaneously monitor input from a terminal and a pipe or socket.

Note that none of these techniques performs I/O. They merely tell us that a
file descriptor is ready. Some other system call must then be used to actually per-
form the I/O.

One I/O model that we don’t describe in this chapter is POSIX asynchronous
I/O (AIO). POSIX AIO allows a process to queue an I/O operation to a file
and then later be notified when the operation is complete. The advantage of
POSIX AIO is that the initial I/O call returns immediately, so that the process
is not tied up waiting for data to be transferred to the kernel or for the opera-
tion to complete. This allows the process to perform other tasks in parallel
with the I/O (which may include queuing further I/O requests). For certain
types of applications, POSIX AIO can provide useful performance benefits.
Currently, Linux provides a threads-based implementation of POSIX AIO
within glibc. At the time of writing, work is ongoing toward providing an in-ker-
nel implementation of POSIX AIO, which should provide better scaling per-
formance. POSIX AIO is described in [Gallmeister, 1995] and [Robbins &
Robbins, 2003].

1328 Chapter 63

Which technique?
During the course of this chapter, we’ll consider the reasons we may choose one of
these techniques rather than another. In the meantime, we summarize a few points:

z The select() and poll() system calls are long-standing interfaces that have been
present on UNIX systems for many years. Compared to the other techniques,
their primary advantage is portability. Their main disadvantage is that they
don’t scale well when monitoring large numbers (hundreds or thousands) of
file descriptors.

z The key advantage of the epoll API is that it allows an application to efficiently
monitor large numbers of file descriptors. Its primary disadvantage is that it is
a Linux-specific API.

Some other UNIX implementations provide (nonstandard) mechanisms simi-
lar to epoll. For example, Solaris provides the special /dev/poll file (described
in the Solaris poll(7d) manual page), and some of the BSDs provide the kqueue
API (which provides a more general-purpose monitoring facility than epoll).
[Stevens et al., 2004] briefly describes these two mechanisms; a longer discus-
sion of kqueue can be found in [Lemon, 2001].

z Like epoll, signal-driven I/O allows an application to efficiently monitor large
numbers of file descriptors. However, epoll provides a number of advantages
over signal-driven I/O:

– We avoid the complexities of dealing with signals.

– We can specify the kind of monitoring that we want to perform (e.g., ready
for reading or ready for writing).

– We can select either level-triggered or edge-triggered notification (described
in Section 63.1.1).

Furthermore, taking full advantage of signal-driven I/O requires the use of
nonportable, Linux-specific features, and if we do this, signal-driven I/O is no
more portable than epoll.

Because, on the one hand, select() and poll() are more portable, while signal-driven
I/O and epoll deliver better performance, for some applications, it can be worth-
while writing an abstract software layer for monitoring file descriptor events. With
such a layer, portable programs can employ epoll (or a similar API) on systems that
provide it, and fall back to the use of select() or poll() on other systems.

The libevent library is a software layer that provides an abstraction for monitor-
ing file descriptor events. It has been ported to a number of UNIX systems. As
its underlying mechanism, libevent can (transparently) employ any of the tech-
niques described in this chapter: select(), poll(), signal-driven I/O, or epoll, as
well as the Solaris specific /dev/poll interface or the BSD kqueue interface. (Thus,
libevent also serves as an example of how to use each of these techniques.) Written
by Niels Provos, libevent is available at http://monkey.org/~provos/libevent/.

Al ternat ive I/O Models 1329

63.1.1 Level-Triggered and Edge-Triggered Notification
Before discussing the various alternative I/O mechanisms in detail, we need to dis-
tinguish two models of readiness notification for a file descriptor:

z Level-triggered notification: A file descriptor is considered to be ready if it is
possible to perform an I/O system call without blocking.

z Edge-triggered notification: Notification is provided if there is I/O activity (e.g.,
new input) on a file descriptor since it was last monitored.

Table 63-1 summarizes the notification models employed by I/O multiplexing,
signal-driven I/O, and epoll. The epoll API differs from the other two I/O models in
that it can employ both level-triggered notification (the default) and edge-triggered
notification.

Details of the differences between these two notification models will become
clearer during the course of the chapter. For now, we describe how the choice of
notification model affects the way we design a program.

When we employ level-triggered notification, we can check the readiness of a
file descriptor at any time. This means that when we determine that a file descriptor
is ready (e.g., it has input available), we can perform some I/O on the descriptor, and
then repeat the monitoring operation to check if the descriptor is still ready (e.g., it
still has more input available), in which case we can perform more I/O, and so on. In
other words, because the level-triggered model allows us to repeat the I/O moni-
toring operation at any time, it is not necessary to perform as much I/O as possible
(e.g., read as many bytes as possible) on the file descriptor (or even perform any I/O
at all) each time we are notified that a file descriptor is ready.

By contrast, when we employ edge-triggered notification, we receive notifica-
tion only when an I/O event occurs. We don’t receive any further notification until
another I/O event occurs. Furthermore, when an I/O event is notified for a file
descriptor, we usually don’t know how much I/O is possible (e.g., how many bytes
are available for reading). Therefore, programs that employ edge-triggered notifi-
cation are usually designed according to the following rules:

z After notification of an I/O event, the program should—at some point—perform
as much I/O as possible (e.g., read as many bytes as possible) on the corre-
sponding file descriptor. If the program fails to do this, then it might miss the
opportunity to perform some I/O, because it would not be aware of the need
to operate on the file descriptor until another I/O event occurred. This could
lead to spurious data loss or blockages in a program. We said “at some point,”
because sometimes it may not be desirable to perform all of the I/O immediately
after we determine that the file descriptor is ready. The problem is that we may

Table 63-1: Use of level-triggered and edge-triggered notification models

I/O model Level-triggered? Edge-triggered?

select(), poll() x
Signal-driven I/O x
epoll x x

1330 Chapter 63

starve other file descriptors of attention if we perform a large amount of I/O
on one file descriptor. We consider this point in more detail when we describe
the edge-triggered notification model for epoll in Section 63.4.6.

z If the program employs a loop to perform as much I/O as possible on the file
descriptor, and the descriptor is marked as blocking, then eventually an I/O sys-
tem call will block when no more I/O is possible. For this reason, each monitored
file descriptor is normally placed in nonblocking mode, and after notification
of an I/O event, I/O operations are performed repeatedly until the relevant
system call (e.g., read() or write()) fails with the error EAGAIN or EWOULDBLOCK.

63.1.2 Employing Nonblocking I/O with Alternative I/O Models
Nonblocking I/O (the O_NONBLOCK flag) is often used in conjunction with the I/O
models described in this chapter. Some examples of why this can be useful are the
following:

z As explained in the previous section, nonblocking I/O is usually employed in con-
junction with I/O models that provide edge-triggered notification of I/O events.

z If multiple processes (or threads) are performing I/O on the same open file
descriptions, then, from a particular process’s point of view, a descriptor’s
readiness may change between the time the descriptor was notified as being
ready and the time of the subsequent I/O call. Consequently, a blocking I/O call
could block, thus preventing the process from monitoring other file descriptors.
(This can occur for all of the I/O models that we describe in this chapter, regard-
less of whether they employ level-triggered or edge-triggered notification.)

z Even after a level-triggered API such as select() or poll() informs us that a file
descriptor for a stream socket is ready for writing, if we write a large enough
block of data in a single write() or send(), then the call will nevertheless block.

z In rare cases, level-triggered APIs such as select() and poll() can return spurious
readiness notifications—they can falsely inform us that a file descriptor is ready.
This could be caused by a kernel bug or be expected behavior in an uncom-
mon scenario.

Section 16.6 of [Stevens et al., 2004] describes one example of spurious readi-
ness notifications on BSD systems for a listening socket. If a client connects to
a server’s listening socket and then resets the connection, a select() performed
by the server between these two events will indicate the listening socket as
being readable, but a subsequent accept() that is performed after the client’s
reset will block.

63.2 I/O Multiplexing
I/O multiplexing allows us to simultaneously monitor multiple file descriptors to
see if I/O is possible on any of them. We can perform I/O multiplexing using
either of two system calls with essentially the same functionality. The first of these,
select(), appeared along with the sockets API in BSD. This was historically the more
widespread of the two system calls. The other system call, poll(), appeared in System V.
Both select() and poll() are nowadays required by SUSv3.

Al ternat ive I/O Models 1331

We can use select() and poll() to monitor file descriptors for regular files, termi-
nals, pseudoterminals, pipes, FIFOs, sockets, and some types of character devices.
Both system calls allow a process either to block indefinitely waiting for file descrip-
tors to become ready or to specify a timeout on the call.

63.2.1 The select() System Call
The select() system call blocks until one or more of a set of file descriptors becomes
ready.

The nfds, readfds, writefds, and exceptfds arguments specify the file descriptors that
select() is to monitor. The timeout argument can be used to set an upper limit on the
time for which select() will block. We describe each of these arguments in detail below.

In the prototype for select() shown above, we include <sys/time.h> because that
was the header specified in SUSv2, and some UNIX implementations require
this header. (The <sys/time.h> header is present on Linux, and including it
does no harm.)

File descriptor sets
The readfds, writefds, and exceptfds arguments are pointers to file descriptor sets, repre-
sented using the data type fd_set. These arguments are used as follows:

z readfds is the set of file descriptors to be tested to see if input is possible;

z writefds is the set of file descriptors to be tested to see if output is possible; and

z exceptfds is the set of file descriptors to be tested to see if an exceptional condi-
tion has occurred.

The term exceptional condition is often misunderstood to mean that some sort of
error condition has arisen on the file descriptor. This is not the case. An exceptional
condition occurs in just two circumstances on Linux (other UNIX implementations
are similar):

z A state change occurs on a pseudoterminal slave connected to a master that is
in packet mode (Section 64.5).

z Out-of-band data is received on a stream socket (Section 61.13.1).

Typically, the fd_set data type is implemented as a bit mask. However, we don’t
need to know the details, since all manipulation of file descriptor sets is done via
four macros: FD_ZERO(), FD_SET(), FD_CLR(), and FD_ISSET().

#include <sys/time.h> /* For portability */
#include <sys/select.h>

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
 struct timeval *timeout);

Returns number of ready file descriptors, 0 on timeout, or –1 on error

1332 Chapter 63

These macros operate as follows:

z FD_ZERO() initializes the set pointed to by fdset to be empty.

z FD_SET() adds the file descriptor fd to the set pointed to by fdset.

z FD_CLR() removes the file descriptor fd from the set pointed to by fdset.

z FD_ISSET() returns true if the file descriptor fd is a member of the set pointed to
by fdset.

A file descriptor set has a maximum size, defined by the constant FD_SETSIZE. On
Linux, this constant has the value 1024. (Other UNIX implementations have similar
values for this limit.)

Even though the FD_* macros are operating on user-space data structures, and
the kernel implementation of select() can handle descriptor sets with larger
sizes, glibc provides no simple way of modifying the definition of FD_SETSIZE. If
we want to change this limit, we must modify the definition in the glibc header
files. However, for reasons that we describe later in this chapter, if we need to
monitor large numbers of descriptors, then using epoll is probably preferable
to the use of select().

The readfds, writefds, and exceptfds arguments are all value-result. Before the call to
select(), the fd_set structures pointed to by these arguments must be initialized
(using FD_ZERO() and FD_SET()) to contain the set of file descriptors of interest. The
select() call modifies each of these structures so that, on return, they contain the set
of file descriptors that are ready. (Since these structures are modified by the call,
we must ensure that we reinitialize them if we are repeatedly calling select() from
within a loop.) The structures can then be examined using FD_ISSET().

If we are not interested in a particular class of events, then the corresponding
fd_set argument can be specified as NULL. We say more about the precise meaning of
each of the three event types in Section 63.2.3.

The nfds argument must be set one greater than the highest file descriptor
number included in any of the three file descriptor sets. This argument allows
select() to be more efficient, since the kernel then knows not to check whether file
descriptor numbers higher than this value are part of each file descriptor set.

#include <sys/select.h>

void FD_ZERO(fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_CLR(int fd, fd_set *fdset);

int FD_ISSET(int fd, fd_set *fdset);

Returns true (1) if fd is in fdset, or false (0) otherwise

Al ternat ive I/O Models 1333

The timeout argument
The timeout argument controls the blocking behavior of select(). It can be specified
either as NULL, in which case select() blocks indefinitely, or as a pointer to a timeval
structure:

struct timeval {
 time_t tv_sec; /* Seconds */
 suseconds_t tv_usec; /* Microseconds (long int) */
};

If both fields of timeout are 0, then select() doesn’t block; it simply polls the specified
file descriptors to see which ones are ready and returns immediately. Otherwise,
timeout specifies an upper limit on the time for which select() is to wait.

Although the timeval structure affords microsecond precision, the accuracy of
the call is limited by the granularity of the software clock (Section 10.6). SUSv3
specifies that the timeout is rounded upward if it is not an exact multiple of this
granularity.

SUSv3 requires that the maximum permissible timeout interval be at least 31 days.
Most UNIX implementations allow a considerably higher limit. Since Linux/
x86-32 uses a 32-bit integer for the time_t type, the upper limit is many years.

When timeout is NULL, or points to a structure containing nonzero fields, select()
blocks until one of the following occurs:

z at least one of the file descriptors specified in readfds, writefds, or exceptfds
becomes ready;

z the call is interrupted by a signal handler; or

z the amount of time specified by timeout has passed.

In older UNIX implementations that lacked a sleep call with subsecond preci-
sion (e.g., nanosleep()), select() was used to emulate this functionality by specifying
nfds as 0; readfds, writefds, and exceptfds as NULL; and the desired sleep interval
in timeout.

On Linux, if select() returns because one or more file descriptors became ready, and
if timeout was non-NULL, then select() updates the structure to which timeout points to
indicate how much time remained until the call would have timed out. However,
this behavior is implementation-specific. SUSv3 also allows the possibility that an
implementation leaves the structure pointed to by timeout unchanged, and most
other UNIX implementations don’t modify this structure. Portable applications
that employ select() within a loop should always ensure that the structure pointed to
by timeout is initialized before each select() call, and should ignore the information
returned in the structure after the call.

SUSv3 states that the structure pointed to by timeout may be modified only on a
successful return from select(). However, on Linux, if select() is interrupted by a signal
handler (so that it fails with the error EINTR), then the structure is modified to indicate
the time remaining until a timeout would have occurred (i.e., like a successful return).

1334 Chapter 63

If we use the Linux-specific personality() system call to set a personality that
includes the STICKY_TIMEOUTS personality bit, then select() doesn’t modify the
structure pointed to by timeout.

Return value from select()
As its function result, select() returns one of the following:

z A return value of –1 indicates that an error occurred. Possible errors include
EBADF and EINTR. EBADF indicates that one of the file descriptors in readfds, writefds,
or exceptfds is invalid (e.g., not currently open). EINTR, indicates that the call was
interrupted by a signal handler. (As noted in Section 21.5, select() is never auto-
matically restarted if interrupted by a signal handler.)

z A return value of 0 means that the call timed out before any file descriptor became
ready. In this case, each of the returned file descriptor sets will be empty.

z A positive return value indicates that one or more file descriptors is ready. The
return value is the number of ready descriptors. In this case, each of the
returned file descriptor sets must be examined (using FD_ISSET()) in order to
find out which I/O events occurred. If the same file descriptor is specified in
more than one of readfds, writefds, and exceptfds, it is counted multiple times if it
is ready for more than one event. In other words, select() returns the total num-
ber of file descriptors marked as ready in all three returned sets.

Example program
The program in Listing 63-1 demonstrates the use of select(). Using command-line
arguments, we can specify the timeout and the file descriptors that we wish to moni-
tor. The first command-line argument specifies the timeout for select(), in seconds. If
a hyphen (-) is specified here, then select() is called with a timeout of NULL, meaning
block indefinitely. Each of the remaining command-line arguments specifies the
number of a file descriptor to be monitored, followed by letters indicating the opera-
tions for which the descriptor is to be checked. The letters we can specify here are
r (ready for read) and w (ready for write).

Listing 63-1: Using select() to monitor multiple file descriptors
––– altio/t_select.c

#include <sys/time.h>
#include <sys/select.h>
#include "tlpi_hdr.h"

static void
usageError(const char *progName)
{
 fprintf(stderr, "Usage: %s {timeout|-} fd-num[rw]...\n", progName);
 fprintf(stderr, " - means infinite timeout; \n");
 fprintf(stderr, " r = monitor for read\n");
 fprintf(stderr, " w = monitor for write\n\n");
 fprintf(stderr, " e.g.: %s - 0rw 1w\n", progName);
 exit(EXIT_FAILURE);
}

Al ternat ive I/O Models 1335

int
main(int argc, char *argv[])
{
 fd_set readfds, writefds;
 int ready, nfds, fd, numRead, j;
 struct timeval timeout;
 struct timeval *pto;
 char buf[10]; /* Large enough to hold "rw\0" */

 if (argc < 2 || strcmp(argv[1], "--help") == 0)
 usageError(argv[0]);

 /* Timeout for select() is specified in argv[1] */

 if (strcmp(argv[1], "-") == 0) {
 pto = NULL; /* Infinite timeout */
 } else {
 pto = &timeout;
 timeout.tv_sec = getLong(argv[1], 0, "timeout");
 timeout.tv_usec = 0; /* No microseconds */
 }

 /* Process remaining arguments to build file descriptor sets */

 nfds = 0;
 FD_ZERO(&readfds);
 FD_ZERO(&writefds);

 for (j = 2; j < argc; j++) {
 numRead = sscanf(argv[j], "%d%2[rw]", &fd, buf);
 if (numRead != 2)
 usageError(argv[0]);
 if (fd >= FD_SETSIZE)
 cmdLineErr("file descriptor exceeds limit (%d)\n", FD_SETSIZE);

 if (fd >= nfds)
 nfds = fd + 1; /* Record maximum fd + 1 */
 if (strchr(buf, 'r') != NULL)
 FD_SET(fd, &readfds);
 if (strchr(buf, 'w') != NULL)
 FD_SET(fd, &writefds);
 }

 /* We've built all of the arguments; now call select() */

 ready = select(nfds, &readfds, &writefds, NULL, pto);
 /* Ignore exceptional events */
 if (ready == -1)
 errExit("select");

 /* Display results of select() */

 printf("ready = %d\n", ready);

1336 Chapter 63

 for (fd = 0; fd < nfds; fd++)
 printf("%d: %s%s\n", fd, FD_ISSET(fd, &readfds) ? "r" : "",
 FD_ISSET(fd, &writefds) ? "w" : "");

 if (pto != NULL)
 printf("timeout after select(): %ld.%03ld\n",
 (long) timeout.tv_sec, (long) timeout.tv_usec / 10000);
 exit(EXIT_SUCCESS);
}

––– altio/t_select.c

In the following shell session log, we demonstrate the use of the program in List-
ing 63-1. In the first example, we make a request to monitor file descriptor 0 for
input with a 10-second timeout:

$./t_select 10 0r
Press Enter, so that a line of input is available on file descriptor 0
ready = 1
0: r
timeout after select(): 8.003
$ Next shell prompt is displayed

The above output shows us that select() determined that one file descriptor was
ready. This was file descriptor 0, which was ready for reading. We can also see that
the timeout was modified. The final line of output, consisting of just the shell $
prompt, appeared because the t_select program didn’t read the newline character
that made file descriptor 0 ready, and so that character was read by the shell, which
responded by printing another prompt.

In the next example, we again monitor file descriptor 0 for input, but this time
with a timeout of 0 seconds:

$./t_select 0 0r
ready = 0
timeout after select(): 0.000

The select() call returned immediately, and found no file descriptor was ready.
In the next example, we monitor two file descriptors: descriptor 0, to see if

input is available, and descriptor 1, to see if output is possible. In this case, we specify
the timeout as NULL (the first command-line argument is a hyphen), meaning infinity:

$./t_select - 0r 1w
ready = 1
0:
1: w

The select() call returned immediately, informing us that output was possible on file
descriptor 1.

Al ternat ive I/O Models 1337

63.2.2 The poll() System Call
The poll() system call performs a similar task to select(). The major difference
between the two system calls lies in how we specify the file descriptors to be moni-
tored. With select(), we provide three sets, each marked to indicate the file descriptors
of interest. With poll(), we provide a list of file descriptors, each marked with the set of
events of interest.

The fds argument and the pollfd array (nfds) specify the file descriptors that poll() is
to monitor. The timeout argument can be used to set an upper limit on the time for
which poll() will block. We describe each of these arguments in detail below.

The pollfd array
The fds argument lists the file descriptors to be monitored by poll(). This argument
is an array of pollfd structures, defined as follows:

struct pollfd {
 int fd; /* File descriptor */
 short events; /* Requested events bit mask */
 short revents; /* Returned events bit mask */
};

The nfds arguments specifies the number of items in the fds array. The nfds_t data
type used to type the nfds argument is an unsigned integer type.

The events and revents fields of the pollfd structure are bit masks. The caller ini-
tializes events to specify the events to be monitored for the file descriptor fd. Upon
return from poll(), revents is set to indicate which of those events actually occurred
for this file descriptor.

Table 63-2 lists the bits that may appear in the events and revents fields. The first
group of bits in this table (POLLIN, POLLRDNORM, POLLRDBAND, POLLPRI, and POLLRDHUP) are
concerned with input events. The next group of bits (POLLOUT, POLLWRNORM, and
POLLWRBAND) are concerned with output events. The third group of bits (POLLERR,
POLLHUP, and POLLNVAL) are set in the revents field to return additional information
about the file descriptor. If specified in the events field, these three bits are ignored.
The final bit (POLLMSG) is unused by poll() on Linux.

On UNIX implementations providing STREAMS devices, POLLMSG indicates
that a message containing a SIGPOLL signal has reached the head of the stream.
POLLMSG is unused on Linux, because Linux doesn’t implement STREAMS.

#include <poll.h>

int poll(struct pollfd fds[], nfds_t nfds, int timeout);

Returns number of ready file descriptors, 0 on timeout, or –1 on error

1338 Chapter 63

It is permissible to specify events as 0 if we are not interested in events on a particular
file descriptor. Furthermore, specifying a negative value for the fd field (e.g., negating
its value if nonzero) causes the corresponding events field to be ignored and the
revents field always to be returned as 0. Either of these techniques can be used to
(perhaps temporarily) disable monitoring of a single file descriptor, without need-
ing to rebuild the entire fds list.

Note the following further points regarding the Linux implementation of poll():

z Although defined as separate bits, POLLIN and POLLRDNORM are synonymous.

z Although defined as separate bits, POLLOUT and POLLWRNORM are synonymous.

z POLLRDBAND is generally unused; that is, it is ignored in the events field and not set
in revents.

The only place where POLLRDBAND is set is in code implementing the (obsolete)
DECnet networking protocol.

z Although set for sockets in certain circumstances, POLLWRBAND conveys no useful
information. (There are no circumstances in which POLLWRBAND is set when POLLOUT
and POLLWRNORM are not also set.)

POLLRDBAND and POLLWRBAND are meaningful on implementations that provide
System V STREAMS (which Linux does not). Under STREAMS, a message can
be assigned a nonzero priority, and such messages are queued to the receiver
in decreasing order of priority, in a band ahead of normal (priority 0) messages.

z The _XOPEN_SOURCE feature test macro must be defined in order to obtain the
definitions of the constants POLLRDNORM, POLLRDBAND, POLLWRNORM, and POLLWRBAND
from <poll.h>.

Table 63-2: Bit-mask values for events and revents fields of the pollfd structure

Bit Input in
events?

Returned
 in revents?

Description

POLLIN x x Data other than high-priority data can be read
POLLRDNORM x x Equivalent to POLLIN
POLLRDBAND x x Priority data can be read (unused on Linux)
POLLPRI x x High-priority data can be read
POLLRDHUP x x Shutdown on peer socket

POLLOUT x x Normal data can be written
POLLWRNORM x x Equivalent to POLLOUT
POLLWRBAND x x Priority data can be written

POLLERR x An error has occurred
POLLHUP x A hangup has occurred
POLLNVAL x File descriptor is not open

POLLMSG Unused on Linux (and unspecified in SUSv3)

Al ternat ive I/O Models 1339

z POLLRDHUP is a Linux-specific flag available since kernel 2.6.17. In order to obtain
this definition from <poll.h>, the _GNU_SOURCE feature test macro must be defined.

z POLLNVAL is returned if the specified file descriptor was closed at the time of the
poll() call.

Summarizing the above points, the poll() flags of real interest are POLLIN, POLLOUT,
POLLPRI, POLLRDHUP, POLLHUP, and POLLERR. We consider the meanings of these flags in
greater detail in Section 63.2.3.

The timeout argument
The timeout argument determines the blocking behavior of poll() as follows:

z If timeout equals –1, block until one of the file descriptors listed in the fds array
is ready (as defined by the corresponding events field) or a signal is caught.

z If timeout equals 0, do not block—just perform a check to see which file descrip-
tors are ready.

z If timeout is greater than 0, block for up to timeout milliseconds, until one of the
file descriptors in fds is ready, or until a signal is caught.

As with select(), the accuracy of timeout is limited by the granularity of the software
clock (Section 10.6), and SUSv3 specifies that timeout is always rounded upward if it
is not an exact multiple of the clock granularity.

Return value from poll()
As its function result, poll() returns one of the following:

z A return value of –1 indicates that an error occurred. One possible error is
EINTR, indicating that the call was interrupted by a signal handler. (As noted in
Section 21.5, poll() is never automatically restarted if interrupted by a signal
handler.)

z A return of 0 means that the call timed out before any file descriptor became
ready.

z A positive return value indicates that one or more file descriptors are ready.
The returned value is the number of pollfd structures in the fds array that have a
nonzero revents field.

Note the slightly different meaning of a positive return value from select() and
poll(). The select() system call counts a file descriptor multiple times if it occurs
in more than one returned file descriptor set. The poll() system call returns a
count of ready file descriptors, and a file descriptor is counted only once, even
if multiple bits are set in the corresponding revents field.

Example program
Listing 63-2 provides a simple demonstration of the use of poll(). This program
creates a number of pipes (each pipe uses a consecutive pair of file descriptors),
writes bytes to the write ends of randomly selected pipes, and then performs a
poll() to see which pipes have data available for reading.

1340 Chapter 63

The following shell session shows an example of what we see when running this
program. The command-line arguments to the program specify that ten pipes
should be created, and writes should be made to three randomly selected pipes.

$./poll_pipes 10 3
Writing to fd: 4 (read fd: 3)
Writing to fd: 14 (read fd: 13)
Writing to fd: 14 (read fd: 13)
poll() returned: 2
Readable: 3
Readable: 13

From the above output, we can see that poll() found two pipes had data available
for reading.

Listing 63-2: Using poll() to monitor multiple file descriptors
––– altio/poll_pipes.c

#include <time.h>
#include <poll.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
 int numPipes, j, ready, randPipe, numWrites;
 int (*pfds)[2]; /* File descriptors for all pipes */
 struct pollfd *pollFd;

 if (argc < 2 || strcmp(argv[1], "--help") == 0)
 usageErr("%s num-pipes [num-writes]\n", argv[0]);

 /* Allocate the arrays that we use. The arrays are sized according
 to the number of pipes specified on command line */

 numPipes = getInt(argv[1], GN_GT_0, "num-pipes");

 pfds = calloc(numPipes, sizeof(int [2]));
 if (pfds == NULL)
 errExit("malloc");
 pollFd = calloc(numPipes, sizeof(struct pollfd));
 if (pollFd == NULL)
 errExit("malloc");

 /* Create the number of pipes specified on command line */

 for (j = 0; j < numPipes; j++)
 if (pipe(pfds[j]) == -1)
 errExit("pipe %d", j);

 /* Perform specified number of writes to random pipes */

 numWrites = (argc > 2) ? getInt(argv[2], GN_GT_0, "num-writes") : 1;

Al ternat ive I/O Models 1341

 srandom((int) time(NULL));
 for (j = 0; j < numWrites; j++) {
 randPipe = random() % numPipes;
 printf("Writing to fd: %3d (read fd: %3d)\n",
 pfds[randPipe][1], pfds[randPipe][0]);
 if (write(pfds[randPipe][1], "a", 1) == -1)
 errExit("write %d", pfds[randPipe][1]);
 }

 /* Build the file descriptor list to be supplied to poll(). This list
 is set to contain the file descriptors for the read ends of all of
 the pipes. */

 for (j = 0; j < numPipes; j++) {
 pollFd[j].fd = pfds[j][0];
 pollFd[j].events = POLLIN;
 }

 ready = poll(pollFd, numPipes, -1); /* Nonblocking */
 if (ready == -1)
 errExit("poll");

 printf("poll() returned: %d\n", ready);

 /* Check which pipes have data available for reading */

 for (j = 0; j < numPipes; j++)
 if (pollFd[j].revents & POLLIN)
 printf("Readable: %d %3d\n", j, pollFd[j].fd);

 exit(EXIT_SUCCESS);
}

––– altio/poll_pipes.c

63.2.3 When Is a File Descriptor Ready?
Correctly using select() and poll() requires an understanding of the conditions
under which a file descriptor indicates as being ready. SUSv3 says that a file
descriptor (with O_NONBLOCK clear) is considered to be ready if a call to an I/O func-
tion would not block, regardless of whether the function would actually transfer data.
The key point is italicized: select() and poll() tell us whether an I/O operation would
not block, rather than whether it would successfully transfer data. In this light, let
us consider how these system calls operate for different types of file descriptors.
We show this information in tables containing two columns:

z The select() column indicates whether a file descriptor is marked as readable (r),
writable (w), or having an exceptional condition (x).

z The poll() column indicates the bit(s) returned in the revents field. In these
tables, we omit mention of POLLRDNORM, POLLWRNORM, POLLRDBAND, and POLLWRBAND.
Although some of these flags may be returned in revents in various circum-
stances (if they are specified in events), they convey no useful information
beyond that provided by POLLIN, POLLOUT, POLLHUP, and POLLERR.

1342 Chapter 63

Regular files
File descriptors that refer to regular files are always marked as readable and writ-
able by select(), and returned with POLLIN and POLLOUT set in revents for poll(), for the
following reasons:

z A read() will always immediately return data, end-of-file, or an error (e.g., the
file was not opened for reading).

z A write() will always immediately transfer data or fail with some error.

SUSv3 says that select() should also mark a descriptor for a regular file as having
an exceptional condition (though this has no obvious meaning for regular
files). Only some implementations do this; Linux is one of those that do not.

Terminals and pseudoterminals
Table 63-3 summarizes the behavior of select() and poll() for terminals and
pseudoterminals (Chapter 64).

When one half of a pseudoterminal pair is closed, the revents setting returned
by poll() for the other half of the pair depends on the implementation. On Linux, at
least the POLLHUP flag is set. However, other implementations return various flags to
indicate this event—for example, POLLHUP, POLLERR, or POLLIN. Furthermore, on some
implementations, the flags that are set depend on whether it is the master or the
slave device that is being monitored.

Pipes and FIFOs
Table 63-4 summarizes the details for the read end of a pipe or FIFO. The Data in
pipe? column indicates whether the pipe has at least 1 byte of data available for read-
ing. In this table, we assume that POLLIN was specified in the events field for poll().

On some other UNIX implementations, if the write end of a pipe is closed,
then, instead of returning with POLLHUP set, poll() returns with the POLLIN bit set
(since a read() will return immediately with end-of-file). Portable applications
should check to see if either bit is set in order to know if a read() will block.

Table 63-5 summarizes the details for the write end of a pipe. In this table, we
assume that POLLOUT was specified in the events field for poll(). The Space for PIPE_BUF
bytes? column indicates whether the pipe has room to atomically write PIPE_BUF bytes
without blocking. This is the criterion on which Linux considers a pipe ready for
writing. Some other UNIX implementations use the same criterion; others con-
sider a pipe writable if even a single byte can be written. (In Linux 2.6.10 and ear-
lier, the capacity of a pipe is the same as PIPE_BUF. This means that a pipe is
considered unwritable if it contains even a single byte of data.)

Table 63-3: select() and poll() indications for terminals and pseudoterminals

Condition or event select() poll()

Input available r POLLIN

Output possible w POLLOUT

After close() by pseudoterminal peer rw See text
Pseudoterminal master in packet mode detects slave state change x POLLPRI

Al ternat ive I/O Models 1343

On some other UNIX implementations, if the read end of a pipe is closed,
then, instead of returning with POLLERR set, poll() returns with either the POLLOUT bit
or the POLLHUP bit set. Portable applications need to check to see if any of these bits
is set to determine if a write() will block.

Sockets
Table 63-6 summarizes the behavior of select() and poll() for sockets. For the poll()
column, we assume that events was specified as (POLLIN | POLLOUT | POLLPRI). For the
select() column, we assume that the file descriptor is being tested to see if input is
possible, output is possible, or an exceptional condition occurred (i.e., the file
descriptor is specified in all three sets passed to select()). This table covers just the
common cases, not all possible scenarios.

The Linux poll() behavior for UNIX domain sockets after a peer close() differs
from that shown in Table 63-6. As well as the other flags, poll() additionally
returns POLLHUP in revents.

The Linux-specific POLLRDHUP flag (available since Linux 2.6.17) needs a little further
explanation. This flag—actually in the form of EPOLLRDHUP—is designed primarily for
use with the edge-triggered mode of the epoll API (Section 63.4). It is returned
when the remote end of a stream socket connection has shut down the writing half

Table 63-4: select() and poll() indications for the read end of a pipe or FIFO

Condition or event
select() poll()

Data in pipe? Write end open?

no no r POLLHUP

yes yes r POLLIN

yes no r POLLIN | POLLHUP

Table 63-5: select() and poll() indications for the write end of a pipe or FIFO

Condition or event
select() poll()

Space for PIPE_BUF bytes? Read end open?

no no w POLLERR

yes yes w POLLOUT

yes no w POLLOUT | POLLERR

Table 63-6: select() and poll() indications for sockets

Condition or event select() poll()

Input available r POLLIN

Output possible w POLLOUT

Incoming connection established on listening socket r POLLIN

Out-of-band data received (TCP only) x POLLPRI

Stream socket peer closed connection or executed
shutdown(SHUT_WR)

rw POLLIN | POLLOUT |
POLLRDHUP

1344 Chapter 63

of the connection. The use of this flag allows an application that uses the epoll edge-
triggered interface to employ simpler code to recognize a remote shutdown. (The
alternative is for the application to note that the POLLIN flag is set and then perform
a read(), which indicates the remote shutdown with a return of 0.)

63.2.4 Comparison of select() and poll()
In this section, we consider some similarities and differences between select() and poll().

Implementation details
Within the Linux kernel, select() and poll() both employ the same set of kernel-
internal poll routines. These poll routines are distinct from the poll() system call
itself. Each routine returns information about the readiness of a single file descrip-
tor. This readiness information takes the form of a bit mask whose values corre-
spond to the bits returned in the revents field by the poll() system call (Table 63-2).
The implementation of the poll() system call involves calling the kernel poll routine
for each file descriptor and placing the resulting information in the corresponding
revents field.

To implement select(), a set of macros is used to convert the information
returned by the kernel poll routines into the corresponding event types returned
by select():

#define POLLIN_SET (POLLRDNORM | POLLRDBAND | POLLIN | POLLHUP | POLLERR)
 /* Ready for reading */
#define POLLOUT_SET (POLLWRBAND | POLLWRNORM | POLLOUT | POLLERR)
 /* Ready for writing */
#define POLLEX_SET (POLLPRI) /* Exceptional condition */

These macro definitions reveal the semantic correspondence between the informa-
tion returned by select() and poll(). (If we look at the select() and poll() columns in the
tables in Section 63.2.3, we see that the indications provided by each system call are
consistent with the above macros.) The only additional information we need to
complete the picture is that poll() returns POLLNVAL in the revents field if one of the
monitored file descriptors was closed at the time of the call, while select() returns –1
with errno set to EBADF.

API differences
The following are some differences between the select() and poll() APIs:

z The use of the fd_set data type places an upper limit (FD_SETSIZE) on the range of
file descriptors that can be monitored by select(). By default, this limit is 1024
on Linux, and changing it requires recompiling the application. By contrast, poll()
places no intrinsic limit on the range of file descriptors that can be monitored.

z Because the fd_set arguments of select() are value-result, we must reinitialize
them if making repeated select() calls from within a loop. By using separate
events (input) and revents (output) fields, poll() avoids this requirement.

Al ternat ive I/O Models 1345

z The timeout precision afforded by select() (microseconds) is greater than that
afforded by poll() (milliseconds). (The accuracy of the timeouts of both of these
system calls is nevertheless limited by the software clock granularity.)

z If one of the file descriptors being monitored was closed, then poll() informs us
exactly which one, via the POLLNVAL bit in the corresponding revents field. By
contrast, select() merely returns –1 with errno set to EBADF, leaving us to deter-
mine which file descriptor is closed by checking for an error when performing
an I/O system call on the descriptor. However, this is typically not an impor-
tant difference, since an application can usually keep track of which file
descriptors it has closed.

Portability
Historically, select() was more widely available than poll(). Nowadays, both interfaces
are standardized by SUSv3 and widely available on contemporary implementations.
However, there is some variation in the behavior of poll() across implementations, as
noted in Section 63.2.3.

Performance
The performance of poll() and select() is similar if either of the following is true:

z The range of file descriptors to be monitored is small (i.e., the maximum file
descriptor number is low).

z A large number of file descriptors are being monitored, but they are densely
packed (i.e., most or all of the file descriptors from 0 up to some limit are being
monitored).

However, the performance of select() and poll() can differ noticeably if the set of file
descriptors to be monitored is sparse; that is, the maximum file descriptor number, N,
is large, but only one or a few descriptors in the range 0 to N are being monitored.
In this case, poll() can perform better than select(). We can understand the reasons
for this by considering the arguments passed to the two system calls. With select(),
we pass one or more file descriptor sets and an integer, nfds, which is one greater
than the maximum file descriptor to be examined in each set. The nfds argument
has the same value, regardless of whether we are monitoring all file descriptors in
the range 0 to (nfds – 1) or only the descriptor (nfds – 1). In both cases, the kernel
must examine nfds elements in each set in order to check exactly which file descrip-
tors are to be monitored. By contrast, when using poll(), we specify only the file
descriptors of interest to us, and the kernel checks only those descriptors.

The difference in performance for poll() and select() with sparse descriptor sets
was quite significant in Linux 2.4. Some optimizations in Linux 2.6 have nar-
rowed the performance gap considerably.

We consider the performance of select() and poll() further in Section 63.4.5, where
we compare the performance of these system calls against epoll.

1346 Chapter 63

63.2.5 Problems with select() and poll()
The select() and poll() system calls are the portable, long-standing, and widely used
methods of monitoring multiple file descriptors for readiness. However, these
APIs suffer some problems when monitoring a large number of file descriptors:

z On each call to select() or poll(), the kernel must check all of the specified file
descriptors to see if they are ready. When monitoring a large number of
file descriptors that are in a densely packed range, the time required for this
operation greatly outweighs the time required for the next two operations.

z In each call to select() or poll(), the program must pass a data structure to the
kernel describing all of the file descriptors to be monitored, and, after checking
the descriptors, the kernel returns a modified version of this data structure to
the program. (Furthermore, for select(), we must initialize the data structure
before each call.) For poll(), the size of the data structure increases with the
number of file descriptors being monitored, and the task of copying it from
user to kernel space and back again consumes a noticeable amount of CPU
time when monitoring many file descriptors. For select(), the size of the data
structure is fixed by FD_SETSIZE, regardless of the number of file descriptors
being monitored.

z After the call to select() or poll(), the program must inspect every element of the
returned data structure to see which file descriptors are ready.

The consequence of the above points is that the CPU time required by select() and poll()
increases with the number of file descriptors being monitored (see Section 63.4.5 for
more details). This creates problems for programs that monitor large numbers of
file descriptors.

The poor scaling performance of select() and poll() stems from a simple limitation
of these APIs: typically, a program makes repeated calls to monitor the same set of file
descriptors; however, the kernel doesn’t remember the list of file descriptors to be
monitored between successive calls.

Signal-driven I/O and epoll, which we examine in the following sections, are
both mechanisms that allow the kernel to record a persistent list of file descriptors
in which a process is interested. Doing this eliminates the performance scaling
problems of select() and poll(), yielding solutions that scale according to the number
of I/O events that occur, rather than according to the number of file descriptors
being monitored. Consequently, signal-driven I/O and epoll provide superior per-
formance when monitoring large numbers of file descriptors.

63.3 Signal-Driven I/O
With I/O multiplexing, a process makes a system call (select() or poll()) in order to
check whether I/O is possible on a file descriptor. With signal-driven I/O, a process
requests that the kernel send it a signal when I/O is possible on a file descriptor.
The process can then perform any other activity until I/O is possible, at which time

Al ternat ive I/O Models 1347

the signal is delivered to the process. To use signal-driven I/O, a program per-
forms the following steps:

1. Establish a handler for the signal delivered by the signal-driven I/O mecha-
nism. By default, this notification signal is SIGIO.

2. Set the owner of the file descriptor—that is, the process or process group that is
to receive signals when I/O is possible on the file descriptor. Typically, we make
the calling process the owner. The owner is set using an fcntl() F_SETOWN opera-
tion of the following form:

fcntl(fd, F_SETOWN, pid);

3. Enable nonblocking I/O by setting the O_NONBLOCK open file status flag.

4. Enable signal-driven I/O by turning on the O_ASYNC open file status flag. This
can be combined with the previous step, since they both require the use of the
fcntl() F_SETFL operation (Section 5.3), as in the following example:

flags = fcntl(fd, F_GETFL); /* Get current flags */
fcntl(fd, F_SETFL, flags | O_ASYNC | O_NONBLOCK);

5. The calling process can now perform other tasks. When I/O becomes possible,
the kernel generates a signal for the process and invokes the signal handler
established in step 1.

6. Signal-driven I/O provides edge-triggered notification (Section 63.1.1). This
means that once the process has been notified that I/O is possible, it should
perform as much I/O (e.g., read as many bytes) as possible. Assuming a non-
blocking file descriptor, this means executing a loop that performs I/O system
calls until a call fails with the error EAGAIN or EWOULDBLOCK.

On Linux 2.4 and earlier, signal-driven I/O can be employed with file descriptors
for sockets, terminals, pseudoterminals, and certain other types of devices. Linux 2.6
additionally allows signal-driven I/O to be employed with pipes and FIFOs. Since
Linux 2.6.25, signal-driven I/O can also be used with inotify file descriptors.

In the following pages, we first present an example of the use of signal-driven
I/O, and then explain some of the above steps in greater detail.

Historically, signal-driven I/O was sometimes referred to as asynchronous I/O,
and this is reflected in the name (O_ASYNC) of the associated open file status
flag. However, nowadays, the term asynchronous I/O is used to refer to the type
of functionality provided by the POSIX AIO specification. Using POSIX AIO,
a process requests the kernel to perform an I/O operation, and the kernel
initiates the operation, but immediately passes control back to the calling process;
the process is then later notified when the I/O operation completes or an
error occurs.

O_ASYNC was specified in POSIX.1g, but was not included in SUSv3 because
the specification of the required behavior for this flag was deemed insufficient.

Several UNIX implementations, especially older ones, don’t define the
O_ASYNC constant for use with fcntl(). Instead, the constant is named FASYNC, and
glibc defines this latter name as a synonym for O_ASYNC.

1348 Chapter 63

Example program
Listing 63-3 provides a simple example of the use of signal-driven I/O. This program
performs the steps described above for enabling signal-driven I/O on standard
input, and then places the terminal in cbreak mode (Section 62.6.3), so that input is
available a character at a time. The program then enters an infinite loop, perform-
ing the “work” of incrementing a variable, cnt, while waiting for input to become avail-
able. Whenever input becomes available, the SIGIO handler sets a flag, gotSigio, that is
monitored by the main program. When the main program sees that this flag is set, it
reads all available input characters and prints them along with the current value of cnt.
If a hash character (#) is read in the input, the program terminates.

Here is an example of what we see when we run this program and type the x
character a number of times, followed by a hash (#) character:

$./demo_sigio
cnt=37; read x
cnt=100; read x
cnt=159; read x
cnt=223; read x
cnt=288; read x
cnt=333; read #

Listing 63-3: Using signal-driven I/O on a terminal
––– altio/demo_sigio.c

#include <signal.h>
#include <ctype.h>
#include <fcntl.h>
#include <termios.h>
#include "tty_functions.h" /* Declaration of ttySetCbreak() */
#include "tlpi_hdr.h"

static volatile sig_atomic_t gotSigio = 0;
 /* Set nonzero on receipt of SIGIO */

static void
sigioHandler(int sig)
{
 gotSigio = 1;
}

int
main(int argc, char *argv[])
{
 int flags, j, cnt;
 struct termios origTermios;
 char ch;
 struct sigaction sa;
 Boolean done;

Al ternat ive I/O Models 1349

 /* Establish handler for "I/O possible" signal */

 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_RESTART;
 sa.sa_handler = sigioHandler;
 if (sigaction(SIGIO, &sa, NULL) == -1)
 errExit("sigaction");

 /* Set owner process that is to receive "I/O possible" signal */

 if (fcntl(STDIN_FILENO, F_SETOWN, getpid()) == -1)
 errExit("fcntl(F_SETOWN)");

 /* Enable "I/O possible" signaling and make I/O nonblocking
 for file descriptor */

 flags = fcntl(STDIN_FILENO, F_GETFL);
 if (fcntl(STDIN_FILENO, F_SETFL, flags | O_ASYNC | O_NONBLOCK) == -1)
 errExit("fcntl(F_SETFL)");

 /* Place terminal in cbreak mode */

 if (ttySetCbreak(STDIN_FILENO, &origTermios) == -1)
 errExit("ttySetCbreak");

 for (done = FALSE, cnt = 0; !done ; cnt++) {
 for (j = 0; j < 100000000; j++)
 continue; /* Slow main loop down a little */

 if (gotSigio) { /* Is input available? */

 /* Read all available input until error (probably EAGAIN)
 or EOF (not actually possible in cbreak mode) or a
 hash (#) character is read */

 while (read(STDIN_FILENO, &ch, 1) > 0 && !done) {
 printf("cnt=%d; read %c\n", cnt, ch);
 done = ch == '#';
 }

 gotSigio = 0;
 }
 }

 /* Restore original terminal settings */

 if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &origTermios) == -1)
 errExit("tcsetattr");
 exit(EXIT_SUCCESS);
}

––– altio/demo_sigio.c

1350 Chapter 63

Establish the signal handler before enabling signal-driven I/O
Because the default action of SIGIO is to terminate the process, we should enable the
handler for SIGIO before enabling signal-driven I/O on a file descriptor. If we enable
signal-driven I/O before establishing the SIGIO handler, then there is a time window
during which, if I/O becomes possible, delivery of SIGIO will terminate the process.

On some UNIX implementations, SIGIO is ignored by default.

Setting the file descriptor owner
We set the file descriptor owner using an fcntl() operation of the following form:

fcntl(fd, F_SETOWN, pid);

We may specify that either a single process or all of the processes in a process
group are to be signaled when I/O is possible on the file descriptor. If pid is positive,
it is interpreted as a process ID. If pid is negative, its absolute value specifies a pro-
cess group ID.

On older UNIX implementations, an ioctl() operation—either FIOSETOWN or
SIOCSPGRP—was used to achieve the same effect as F_SETOWN. For compatibility,
these ioctl() operations are also provided on Linux.

Typically, pid is specified as the process ID of the calling process (so that the signal is
sent to the process that has the file descriptor open). However, it is possible to specify
another process or a process group (e.g., the caller’s process group), and signals will
be sent to that target, subject to the permission checks described in Section 20.5,
where the sending process is considered to be the process that does the F_SETOWN.

The fcntl() F_GETOWN operation returns the ID of the process or process group
that is to receive signals when I/O is possible on a specified file descriptor:

id = fcntl(fd, F_GETOWN);
if (id == -1)
 errExit("fcntl");

A process group ID is returned as a negative number by this call.

The ioctl() operation that corresponds to F_GETOWN on older UNIX implementa-
tions was FIOGETOWN or SIOCGPGRP. Both of these ioctl() operations are also provided
on Linux.

A limitation in the system call convention employed on some Linux architectures
(notably, x86) means that if a file descriptor is owned by a process group ID less
than 4096, then, instead of returning that ID as a negative function result from the
fcntl() F_GETOWN operation, glibc misinterprets it as a system call error. Consequently,
the fcntl() wrapper function returns –1, and errno contains the (positive) process
group ID. This is a consequence of the fact that the kernel system call interface
indicates errors by returning a negative errno value as a function result, and there
are a few cases where it is necessary to distinguish such results from a successful call
that returns a valid negative value. To make this distinction, glibc interprets negative

Al ternat ive I/O Models 1351

system call returns in the range –1 to –4095 as indicating an error, copies this (abso-
lute) value into errno, and returns –1 as the function result for the application pro-
gram. This technique is generally sufficient for dealing with the few system call
service routines that can return a valid negative result; the fcntl() F_GETOWN operation
is the only practical case where it fails. This limitation means that an application
that uses process groups to receive “I/O possible” signals (which is unusual) can’t
reliably use F_GETOWN to discover which process group owns a file descriptor.

Since glibc version 2.11, the fcntl() wrapper function fixes the problem of F_GETOWN
with process group IDs less than 4096. It does this by implementing F_GETOWN in
user space using the F_GETOWN_EX operation (Section 63.3.2), which is provided
by Linux 2.6.32 and later.

63.3.1 When Is “I/O Possible” Signaled?
We now consider the details of when “I/O possible” is signaled for various file types.

Terminals and pseudoterminals
For terminals and pseudoterminals, a signal is generated whenever new input becomes
available, even if previous input has not yet been read. “Input possible” is also sig-
naled if an end-of-file condition occurs on a terminal (but not on a pseudoterminal).

There is no “output possible” signaling for terminals. A terminal disconnect is
also not signaled.

Starting with kernel 2.4.19, Linux provides “output possible” signaling for the
slave side of a pseudoterminal. This signal is generated whenever input is consumed on
the master side of the pseudoterminal.

Pipes and FIFOs
For the read end of a pipe or FIFO, a signal is generated in these circumstances:

z Data is written to the pipe (even if there was already unread input available).

z The write end of the pipe is closed.

For the write end of a pipe or FIFO, a signal is generated in these circumstances:

z A read from the pipe increases the amount of free space in the pipe so that it is
now possible to write PIPE_BUF bytes without blocking.

z The read end of the pipe is closed.

Sockets
Signal-driven I/O works for datagram sockets in both the UNIX and the Internet
domains. A signal is generated in the following circumstances:

z An input datagram arrives on the socket (even if there were already unread
datagrams waiting to be read).

z An asynchronous error occurs on the socket.

1352 Chapter 63

Signal-driven I/O works for stream sockets in both the UNIX and the Internet
domains. A signal is generated in the following circumstances:

z A new connection is received on a listening socket.

z A TCP connect() request completes; that is, the active end of a TCP connection
entered the ESTABLISHED state, as shown in Figure 61-5 (page 1272). The
analogous condition is not signaled for UNIX domain sockets.

z New input is received on the socket (even if there was already unread input
available).

z The peer closes its writing half of the connection using shutdown(), or closes its
socket altogether using close().

z Output is possible on the socket (e.g., space has become available in the socket
send buffer).

z An asynchronous error occurs on the socket.

inotify file descriptors
A signal is generated when the inotify file descriptor becomes readable—that is,
when an event occurs for one of the files monitored by the inotify file descriptor.

63.3.2 Refining the Use of Signal-Driven I/O
In applications that need to simultaneously monitor very large numbers (i.e., thou-
sands) of file descriptors—for example, certain types of network servers—signal-
driven I/O can provide significant performance advantages by comparison with
select() and poll(). Signal-driven I/O offers superior performance because the kernel
“remembers” the list of file descriptors to be monitored, and signals the program only
when I/O events actually occur on those descriptors. As a result, the performance of
a program employing signal-driven I/O scales according to the number of I/O
events that occur, rather than the number of file descriptors being monitored.

To take full advantage of signal-driven I/O, we must perform two steps:

z Employ a Linux-specific fcntl() operation, F_SETSIG, to specify a realtime signal
that should be delivered instead of SIGIO when I/O is possible on a file descriptor.

z Specify the SA_SIGINFO flag when using sigaction() to establish the handler for the
realtime signal employed in the previous step (see Section 21.4).

The fcntl() F_SETSIG operation specifies an alternative signal that should be delivered
instead of SIGIO when I/O is possible on a file descriptor:

if (fcntl(fd, F_SETSIG, sig) == -1)
 errExit("fcntl");

The F_GETSIG operation performs the converse of F_SETSIG, retrieving the signal cur-
rently set for a file descriptor:

sig = fcntl(fd, F_GETSIG);
if (sig == -1)
 errExit("fcntl");

Al ternat ive I/O Models 1353

(In order to obtain the definitions of the F_SETSIG and F_GETSIG constants from
<fcntl.h>, we must define the _GNU_SOURCE feature test macro.)

Using F_SETSIG to change the signal used for “I/O possible” notification serves
two purposes, both of which are needed if we are monitoring large numbers of I/O
events on multiple file descriptors:

z The default “I/O possible” signal, SIGIO, is one of the standard, nonqueuing
signals. If multiple I/O events are signaled while SIGIO is blocked—perhaps
because the SIGIO handler is already invoked—all notifications except the first
will be lost. If we use F_SETSIG to specify a realtime signal as the “I/O possible”
signal, multiple notifications can be queued.

z If the handler for the signal is established using a sigaction() call in which the
SA_SIGINFO flag is specified in the sa.sa_flags field, then a siginfo_t structure is
passed as the second argument to the signal handler (Section 21.4). This struc-
ture contains fields identifying the file descriptor on which the event occurred,
as well as the type of event.

Note that the use of both F_SETSIG and SA_SIGINFO is required in order for a valid
siginfo_t structure to be passed to the signal handler.

If we perform an F_SETSIG operation specifying sig as 0, then we return to the
default behavior: SIGIO is delivered, and a siginfo_t argument is not supplied to the
handler.

For an “I/O possible” event, the fields of interest in the siginfo_t structure
passed to the signal handler are as follows:

z si_signo: the number of the signal that caused the invocation of the handler.
This value is the same as the first argument to the signal handler.

z si_fd: the file descriptor for which the I/O event occurred.

z si_code: a code indicating the type of event that occurred. The values that can
appear in this field, along with their general descriptions, are shown in Table 63-7.

z si_band: a bit mask containing the same bits as are returned in the revents field
by the poll() system call. The value set in si_code has a one-to-one correspon-
dence with the bit-mask setting in si_band, as shown in Table 63-7.

In an application that is purely input-driven, we can further refine the use of F_SETSIG.
Instead of monitoring I/O events via a signal handler, we can block the nominated
“I/O possible” signal, and then accept the queued signals via calls to sigwaitinfo() or

Table 63-7: si_code and si_band values in the siginfo_t structure for “I/O possible” events

si_code si_band mask value Description

POLL_IN POLLIN | POLLRDNORM Input available; end-of-file condition
POLL_OUT POLLOUT | POLLWRNORM | POLLWRBAND Output possible
POLL_MSG POLLIN | POLLRDNORM | POLLMSG Input message available (unused)
POLL_ERR POLLERR I/O error
POLL_PRI POLLPRI | POLLRDNORM High-priority input available
POLL_HUP POLLHUP | POLLERR Hangup occurred

1354 Chapter 63

sigtimedwait() (Section 22.10). These system calls return a siginfo_t structure that con-
tains the same information as is passed to a signal handler established with SA_SIGINFO.
Accepting signals in this manner returns us to a synchronous model of event process-
ing, but with the advantage that we are much more efficiently notified about the file
descriptors on which I/O events have occurred than if we use select() or poll().

Handling signal-queue overflow
We saw in Section 22.8 that there is a limit on the number of realtime signals that
may be queued. If this limit is reached, the kernel reverts to delivering the default
SIGIO signal for “I/O possible” notifications. This informs the process that a signal-
queue overflow occurred. When this happens, we lose information about which file
descriptors have I/O events, because SIGIO is not queued. (Furthermore, the SIGIO
handler doesn’t receive a siginfo_t argument, which means that the signal handler
can’t determine the file descriptor that generated the signal.)

We can reduce the likelihood of signal-queue overflows by increasing the limit
on the number of realtime signals that can be queued, as described in Section 22.8.
However, this doesn’t eliminate the need to handle the possibility of an overflow. A
properly designed application using F_SETSIG to establish a realtime signal as the “I/O
possible” notification mechanism must also establish a handler for SIGIO. If SIGIO is
delivered, then the application can drain the queue of realtime signals using
sigwaitinfo() and temporarily revert to the use of select() or poll() to obtain a com-
plete list of file descriptors with outstanding I/O events.

Using signal-driven I/O with multithreaded applications
Starting with kernel 2.6.32, Linux provides two new, nonstandard fcntl() operations
that can be used to set the target for “I/O possible” signals: F_SETOWN_EX and F_GETOWN_EX.

The F_SETOWN_EX operation is like F_SETOWN, but as well as allowing the target to be
specified as a process or process group, it also permits a thread to be specified as
the target for “I/O possible” signals. For this operation, the third argument of
fcntl() is a pointer to a structure of the following form:

struct f_owner_ex {
 int type;
 pid_t pid;
};

The type field defines the meaning of the pid field, and has one of the following values:

F_OWNER_PGRP
The pid field specifies the ID of a process group that is to be the target of
“I/O possible” signals. Unlike with F_SETOWN, a process group ID is specified
as a positive value.

F_OWNER_PID
The pid field specifies the ID of a process that is to be the target of “I/O
possible” signals.

Al ternat ive I/O Models 1355

F_OWNER_TID
The pid field specifies the ID of a thread that is to be the target of “I/O pos-
sible” signals. The ID specified in pid is a value returned by clone() or gettid().

The F_GETOWN_EX operation is the converse of the F_GETOWN_EX operation. It uses the
f_owner_ex structure pointed to by the third argument of fcntl() to return the settings
defined by a previous F_SETOWN_EX operation.

Because the F_SETOWN_EX and F_GETOWN_EX operations represent process group
IDs as positive values, F_GETOWN_EX doesn’t suffer the problem described earlier
for F_GETOWN when using process group IDs less than 4096.

63.4 The epoll API
Like the I/O multiplexing system calls and signal-driven I/O, the Linux epoll (event
poll) API is used to monitor multiple file descriptors to see if they are ready for I/O.
The primary advantages of the epoll API are the following:

z The performance of epoll scales much better than select() and poll() when moni-
toring large numbers of file descriptors.

z The epoll API permits either level-triggered or edge-triggered notification. By
contrast, select() and poll() provide only level-triggered notification, and signal-
driven I/O provides only edge-triggered notification.

The performance of epoll and signal-driven I/O is similar. However, epoll has some
advantages over signal-driven I/O:

z We avoid the complexities of signal handling (e.g., signal-queue overflow).

z We have greater flexibility in specifying what kind of monitoring we want to
perform (e.g., checking to see if a file descriptor for a socket is ready for read-
ing, writing, or both).

The epoll API is Linux-specific, and is new in Linux 2.6.
The central data structure of the epoll API is an epoll instance, which is referred

to via an open file descriptor. This file descriptor is not used for I/O. Instead, it is a
handle for kernel data structures that serve two purposes:

z recording a list of file descriptors that this process has declared an interest in
monitoring—the interest list; and

z maintaining a list of file descriptors that are ready for I/O—the ready list.

The membership of the ready list is a subset of the interest list.
For each file descriptor monitored by epoll, we can specify a bit mask indicating

events that we are interested in knowing about. These bit masks correspond closely
to the bit masks used with poll().

The epoll API consists of three system calls:

z The epoll_create() system call creates an epoll instance and returns a file descriptor
referring to the instance.

1356 Chapter 63

z The epoll_ctl() system call manipulates the interest list associated with an epoll
instance. Using epoll_ctl(), we can add a new file descriptor to the list, remove
an existing descriptor from the list, and modify the mask that determines
which events are to be monitored for a descriptor.

z The epoll_wait() system call returns items from the ready list associated with an
epoll instance.

63.4.1 Creating an epoll Instance: epoll_create()
The epoll_create() system call creates a new epoll instance whose interest list is ini-
tially empty.

The size argument specifies the number of file descriptors that we expect to monitor
via the epoll instance. This argument is not an upper limit, but rather a hint to the
kernel about how to initially dimension internal data structures. (Since Linux 2.6.8,
the size argument is ignored, because changes in the implementation meant
that the information it provided is no longer required.)

As its function result, epoll_create() returns a file descriptor referring to the new
epoll instance. This file descriptor is used to refer to the epoll instance in other epoll
system calls. When the file descriptor is no longer required, it should be closed in
the usual way, using close(). When all file descriptors referring to an epoll instance
are closed, the instance is destroyed and its associated resources are released back
to the system. (Multiple file descriptors may refer to the same epoll instance as a
consequence of calls to fork() or descriptor duplication using dup() or similar.)

Starting with kernel 2.6.27, Linux supports a new system call, epoll_create1().
This system call performs the same task as epoll_create(), but drops the obsolete
size argument and adds a flags argument that can be used to modify the behavior
of the system call. One flag is currently supported: EPOLL_CLOEXEC, which causes
the kernel to enable the close-on-exec flag (FD_CLOEXEC) for the new file descriptor.
This flag is useful for the same reasons as the open() O_CLOEXEC flag described in
Section 4.3.1.

63.4.2 Modifying the epoll Interest List: epoll_ctl()
The epoll_ctl() system call modifies the interest list of the epoll instance referred to
by the file descriptor epfd.

#include <sys/epoll.h>

int epoll_create(int size);

Returns file descriptor on success, or –1 on error

#include <sys/epoll.h>

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *ev);

Returns 0 on success, or –1 on error

Al ternat ive I/O Models 1357

The fd argument identifies which of the file descriptors in the interest list is to have
its settings modified. This argument can be a file descriptor for a pipe, FIFO,
socket, POSIX message queue, inotify instance, terminal, device, or even another epoll
descriptor (i.e., we can build a kind of hierarchy of monitored descriptors). However,
fd can’t be a file descriptor for a regular file or a directory (the error EPERM results).

The op argument specifies the operation to be performed, and has one of the
following values:

EPOLL_CTL_ADD
Add the file descriptor fd to the interest list for epfd. The set of events that
we are interested in monitoring for fd is specified in the buffer pointed to
by ev, as described below. If we attempt to add a file descriptor that is
already in the interest list, epoll_ctl() fails with the error EEXIST.

EPOLL_CTL_MOD
Modify the events setting for the file descriptor fd, using the information
specified in the buffer pointed to by ev. If we attempt to modify the set-
tings of a file descriptor that is not in the interest list for epfd, epoll_ctl() fails
with the error ENOENT.

EPOLL_CTL_DEL
Remove the file descriptor fd from the interest list for epfd. The ev argu-
ment is ignored for this operation. If we attempt to remove a file descriptor
that is not in the interest list for epfd, epoll_ctl() fails with the error ENOENT.
Closing a file descriptor automatically removes it from all of the epoll interest
lists of which it is a member.

The ev argument is a pointer to a structure of type epoll_event, defined as follows:

struct epoll_event {
 uint32_t events; /* epoll events (bit mask) */
 epoll_data_t data; /* User data */
};

The data field of the epoll_event structure is typed as follows:

typedef union epoll_data {
 void *ptr; /* Pointer to user-defined data */
 int fd; /* File descriptor */
 uint32_t u32; /* 32-bit integer */
 uint64_t u64; /* 64-bit integer */
} epoll_data_t;

The ev argument specifies settings for the file descriptor fd, as follows:

z The events subfield is a bit mask specifying the set of events that we are inter-
ested in monitoring for fd. We say more about the bit values that can be used in
this field in the next section.

z The data subfield is a union, one of whose members can be used to specify
information that is passed back to the calling process (via epoll_wait()) if fd later
becomes ready.

1358 Chapter 63

Listing 63-4 shows an example of the use of epoll_create() and epoll_ctl().

Listing 63-4: Using epoll_create() and epoll_ctl()

 int epfd;
 struct epoll_event ev;

 epfd = epoll_create(5);
 if (epfd == -1)
 errExit("epoll_create");

 ev.data.fd = fd;
 ev.events = EPOLLIN;
 if (epoll_ctl(epfd, EPOLL_CTL_ADD, fd, ev) == -1)
 errExit("epoll_ctl");

The max_user_watches limit
Because each file descriptor registered in an epoll interest list requires a small
amount of nonswappable kernel memory, the kernel provides an interface that
defines a limit on the total number of file descriptors that each user can register in
all epoll interest lists. The value of this limit can be viewed and modified via
max_user_watches, a Linux-specific file in the /proc/sys/fs/epoll directory. The default
value of this limit is calculated based on available system memory (see the epoll(7)
manual page).

63.4.3 Waiting for Events: epoll_wait()
The epoll_wait() system call returns information about ready file descriptors from
the epoll instance referred to by the file descriptor epfd. A single epoll_wait() call can
return information about multiple ready file descriptors.

The information about ready file descriptors is returned in the array of epoll_event
structures pointed to by evlist. (The epoll_event structure was described in the previ-
ous section.) The evlist array is allocated by the caller, and the number of elements
it contains is specified in maxevents.

Each item in the array evlist returns information about a single ready file
descriptor. The events subfield returns a mask of the events that have occurred on
this descriptor. The data subfield returns whatever value was specified in ev.data
when we registered interest in this file descriptor using epoll_ctl(). Note that the
data field provides the only mechanism for finding out the number of the file

#include <sys/epoll.h>

int epoll_wait(int epfd, struct epoll_event *evlist, int maxevents, int timeout);

Returns number of ready file descriptors, 0 on timeout, or –1 on error

Al ternat ive I/O Models 1359

descriptor associated with this event. Thus, when we make the epoll_ctl() call that
places a file descriptor in the interest list, we should either set ev.data.fd to the file
descriptor number (as shown in Listing 63-4) or set ev.data.ptr to point to a struc-
ture that contains the file descriptor number.

The timeout argument determines the blocking behavior of epoll_wait(), as follows:

z If timeout equals –1, block until an event occurs for one of the file descriptors in
the interest list for epfd or until a signal is caught.

z If timeout equals 0, perform a nonblocking check to see which events are cur-
rently available on the file descriptors in the interest list for epfd.

z If timeout is greater than 0, block for up to timeout milliseconds, until an event
occurs on one of the file descriptors in the interest list for epfd, or until a signal
is caught.

On success, epoll_wait() returns the number of items that have been placed in the
array evlist, or 0 if no file descriptors were ready within the interval specified by
timeout. On error, epoll_wait() returns –1, with errno set to indicate the error.

In a multithreaded program, it is possible for one thread to use epoll_ctl() to
add file descriptors to the interest list of an epoll instance that is already being
monitored by epoll_wait() in another thread. These changes to the interest list will
be taken into account immediately, and the epoll_wait() call will return readiness
information about the newly added file descriptors.

epoll events
The bit values that can be specified in ev.events when we call epoll_ctl() and that are
placed in the evlist[].events fields returned by epoll_wait() are shown in Table 63-8.
With the addition of an E prefix, most of these bits have names that are the same as
the corresponding event bits used with poll(). (The exceptions are EPOLLET and
EPOLLONESHOT, which we describe in more detail below.) The reason for this corre-
spondence is that, when specified as input to epoll_ctl() or returned as output via
epoll_wait(), these bits convey exactly the same meaning as the corresponding poll()
event bits.

Table 63-8: Bit-mask values for the epoll events field

Bit Input to
epoll_ctl()?

Returned by
epoll_wait()?

Description

EPOLLIN x x Data other than high-priority data can be read
EPOLLPRI x x High-priority data can be read
EPOLLRDHUP x x Shutdown on peer socket (since Linux 2.6.17)
EPOLLOUT x x Normal data can be written
EPOLLET x Employ edge-triggered event notification
EPOLLONESHOT x Disable monitoring after event notification
EPOLLERR x An error has occurred
EPOLLHUP x A hangup has occurred

1360 Chapter 63

The EPOLLONESHOT flag
By default, once a file descriptor is added to an epoll interest list using the epoll_ctl()
EPOLL_CTL_ADD operation, it remains active (i.e., subsequent calls to epoll_wait() will
inform us whenever the file descriptor is ready) until we explicitly remove it from
the list using the epoll_ctl() EPOLL_CTL_DEL operation. If we want to be notified only
once about a particular file descriptor, then we can specify the EPOLLONESHOT flag
(available since Linux 2.6.2) in the ev.events value passed in epoll_ctl(). If this flag is
specified, then, after the next epoll_wait() call that informs us that the corresponding
file descriptor is ready, the file descriptor is marked inactive in the interest list, and
we won’t be informed about its state by future epoll_wait() calls. If desired, we can
subsequently reenable monitoring of this file descriptor using the epoll_ctl()
EPOLL_CTL_MOD operation. (We can’t use the EPOLL_CTL_ADD operation for this purpose,
because the inactive file descriptor is still part of the epoll interest list.)

Example program
Listing 63-5 demonstrates the use of the epoll API. As command-line arguments, this
program expects the pathnames of one or more terminals or FIFOs. The program
performs the following steps:

z Create an epoll instance ..

z Open each of the files named on the command line for input 3 and add the
resulting file descriptor to the interest list of the epoll instance $, specifying the
set of events to be monitored as EPOLLIN.

z Execute a loop / that calls epoll_wait() 1 to monitor the interest list of the epoll
instance and handles the returned events from each call. Note the following
points about this loop:

– After the epoll_wait() call, the program checks for an EINTR return 4, which
may occur if the program was stopped by a signal in the middle of the
epoll_wait() call and then resumed by SIGCONT. (Refer to Section 21.5.) If this
occurs, the program restarts the epoll_wait() call.

– It the epoll_wait() call was successful, the program uses a further loop to
check each of the ready items in evlist 2. For each item in evlist, the pro-
gram checks the events field for the presence of not just EPOLLIN (, but also
EPOLLHUP and EPOLLERR ,. These latter events can occur if the other end of a
FIFO was closed or a terminal hangup occurred. If EPOLLIN was returned,
then the program reads some input from the corresponding file descriptor
and displays it on standard output. Otherwise, if either EPOLLHUP or EPOLLERR
occurred, the program closes the corresponding file descriptor " and decre-
ments the counter of open files (numOpenFds).

– The loop terminates when all open file descriptors have been closed (i.e.,
when numOpenFds equals 0).

The following shell session logs demonstrate the use of the program in Listing 63-5.
We use two terminal windows. In one window, we use the program in Listing 63-5 to
monitor two FIFOs for input. (Each open of a FIFO for reading by this program
will complete only after another process has opened the FIFO for writing, as

Al ternat ive I/O Models 1361

described in Section 44.7.) In the other window, we run instances of cat(1) that
write data to these FIFOs.

Terminal window 1 Terminal window 2
$ mkfifo p q
$./epoll_input p q
 $ cat > p
Opened "p" on fd 4
 Type Control-Z to suspend cat
 [1]+ Stopped cat >p
 $ cat > q
Opened "q" on fd 5
About to epoll_wait()
Type Control-Z to suspend the epoll_input program
[1]+ Stopped ./epoll_input p q

Above, we suspended our monitoring program so that we can now generate input
on both FIFOs, and close the write end of one of them:

 qqq
 Type Control-D to terminate “cat > q”
 $ fg %1
 cat >p
 ppp

Now we resume our monitoring program by bringing it into the foreground, at
which point epoll_wait() returns two events:

$ fg
./epoll_input p q
About to epoll_wait()
Ready: 2
 fd=4; events: EPOLLIN
 read 4 bytes: ppp

 fd=5; events: EPOLLIN EPOLLHUP
 read 4 bytes: qqq

 closing fd 5
About to epoll_wait()

The two blank lines in the above output are the newlines that were read by the
instances of cat, written to the FIFOs, and then read and echoed by our monitoring
program.

Now we type Control-D in the second terminal window in order to terminate
the remaining instance of cat, which causes epoll_wait() to once more return, this
time with a single event:

 Type Control-D to terminate “cat >p”
Ready: 1
 fd=4; events: EPOLLHUP
 closing fd 4
All file descriptors closed; bye

1362 Chapter 63

Listing 63-5: Using the epoll API
––– altio/epoll_input.c
#include <sys/epoll.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

#define MAX_BUF 1000 /* Maximum bytes fetched by a single read() */
#define MAX_EVENTS 5 /* Maximum number of events to be returned from
 a single epoll_wait() call */

int
main(int argc, char *argv[])
{
 int epfd, ready, fd, s, j, num0penFds;
 struct epoll_event ev;
 struct epoll_event evlist[MAX_EVENTS];
 char buf[MAX_BUF];

 if (argc < 2 || strcmp(argv[1], "--help") == 0)
 usageErr("%s file...\n", argv[0]);

. epfd = epoll_create(argc - 1);
 if (epfd == -1)
 errExit("epoll_create");

 /* Open each file on command line, and add it to the "interest
 list" for the epoll instance */

3 for (j = 1; j < argc; j++) {
 fd = open(argv[j], O_RDONLY);
 if (fd == -1)
 errExit("open");
 printf("Opened \"%s\" on fd %d\n", argv[j], fd);

 ev.events = EPOLLIN; /* Only interested in input events */
 ev.data.fd = fd;

$ if (epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &ev) == -1)
 errExit("epoll_ctl");
 }

 numOpenFds = argc - 1;

/ while (numOpenFds > 0) {

 /* Fetch up to MAX_EVENTS items from the ready list */

 printf("About to epoll_wait()\n");
1 ready = epoll_wait(epfd, evlist, MAX_EVENTS, -1);

 if (ready == -1) {
4 if (errno == EINTR)

 continue; /* Restart if interrupted by signal */
 else
 errExit("epoll_wait");
 }

Al ternat ive I/O Models 1363

 printf("Ready: %d\n", ready);

 /* Deal with returned list of events */

2 for (j = 0; j < ready; j++) {
 printf(" fd=%d; events: %s%s%s\n", evlist[j].data.fd,
 (evlist[j].events & EPOLLIN) ? "EPOLLIN " : "",
 (evlist[j].events & EPOLLHUP) ? "EPOLLHUP " : "",
 (evlist[j].events & EPOLLERR) ? "EPOLLERR " : "");

(if (evlist[j].events & EPOLLIN) {
 s = read(evlist[j].data.fd, buf, MAX_BUF);
 if (s == -1)
 errExit("read");
 printf(" read %d bytes: %.*s\n", s, s, buf);

, } else if (evlist[j].events & (EPOLLHUP | EPOLLERR)) {

 /* If EPOLLIN and EPOLLHUP were both set, then there might
 be more than MAX_BUF bytes to read. Therefore, we close
 the file descriptor only if EPOLLIN was not set.
 We'll read further bytes after the next epoll_wait(). */

 printf(" closing fd %d\n", evlist[j].data.fd);
" if (close(evlist[j].data.fd) == -1)

 errExit("close");
 numOpenFds--;
 }
 }
 }

 printf("All file descriptors closed; bye\n");
 exit(EXIT_SUCCESS);
}

––– altio/epoll_input.c

63.4.4 A Closer Look at epoll Semantics
We now look at some subtleties of the interaction of open files, file descriptors, and
epoll. For the purposes of this discussion, it is worth reviewing Figure 5-2 (page 95),
which shows the relationship between file descriptors, open file descriptions, and
the system-wide file i-node table.

When we create an epoll instance using epoll_create(), the kernel creates a new
in-memory i-node and open file description, and allocates a new file descriptor in
the calling process that refers to the open file description. The interest list for an
epoll instance is associated with the open file description, not with the epoll file
descriptor. This has the following consequences:

z If we duplicate an epoll file descriptor using dup() (or similar), then the dupli-
cated descriptor refers to the same epoll interest and ready lists as the original
descriptor. We may modify the interest list by specifying either file descriptor

1364 Chapter 63

as the epfd argument in a call to epoll_ctl(). Similarly, we can retrieve items from
the ready list by specifying either file descriptor as the epfd argument in a call to
epoll_wait().

z The preceding point also applies after a call to fork(). The child inherits a dupli-
cate of the parent’s epoll file descriptor, and this duplicate descriptor refers to
the same epoll data structures.

When we perform an epoll_ctl() EPOLL_CTL_ADD operation, the kernel adds an item to
the epoll interest list that records both the number of the monitored file descriptor
and a reference to the corresponding open file description. For the purpose of
epoll_wait() calls, the kernel monitors the open file description. This means that we
must refine our earlier statement that when a file descriptor is closed, it is automatically
removed from any epoll interest lists of which it is a member. The refinement is this: an
open file description is removed from the epoll interest list once all file descriptors that
refer to it have been closed. This means that if we create duplicate descriptors refer-
ring to an open file—using dup() (or similar) or fork()—then the open file will be
removed only after the original descriptor and all of the duplicates have been closed.

These semantics can lead to some behavior that at first appears surprising.
Suppose that we execute the code shown in Listing 63-6. The epoll_wait() call in this
code will tell us that the file descriptor fd1 is ready (in other words, evlist[0].data.fd
will be equal to fd1), even though fd1 has been closed. This is because there is still
one open file descriptor, fd2, referring to the open file description contained in the
epoll interest list. A similar scenario occurs when two processes hold duplicate
descriptors for the same open file description (typically, as a result of a fork()), and
the process performing the epoll_wait() has closed its file descriptor, but the other
process still holds the duplicate descriptor open.

Listing 63-6: Semantics of epoll with duplicate file descriptors

 int epfd, fd1, fd2;
 struct epoll_event ev;
 struct epoll_event evlist[MAX_EVENTS];

 /* Omitted: code to open 'fd1' and create epoll file descriptor 'epfd' ... */

 ev.data.fd = fd1
 ev.events = EPOLLIN;
 if (epoll_ctl(epfd, EPOLL_CTL_ADD, fd1, ev) == -1)
 errExit("epoll_ctl");

 /* Suppose that 'fd1' now happens to become ready for input */

 fd2 = dup(fd1);
 close(fd1);
 ready = epoll_wait(epfd, evlist, MAX_EVENTS, -1);
 if (ready == -1)
 errExit("epoll_wait");

Al ternat ive I/O Models 1365

63.4.5 Performance of epoll Versus I/O Multiplexing
Table 63-9 shows the results (on Linux 2.6.25) when we monitor N contiguous file
descriptors in the range 0 to N – 1 using poll(), select(), and epoll. (The test was
arranged such that during each monitoring operation, exactly one randomly
selected file descriptor is ready.) From this table, we see that as the number of file
descriptors to be monitored grows large, poll() and select() perform poorly. By con-
trast, the performance of epoll hardly declines as N grows large. (The small decline
in performance as N increases is possibly a result of reaching CPU caching limits on
the test system.)

For the purposes of this test, FD_SETSIZE was changed to 16,384 in the glibc
header files to allow the test program to monitor large numbers of file descrip-
tors using select().

In Section 63.2.5, we saw why select() and poll() perform poorly when monitoring large
numbers of file descriptors. We now look at the reasons why epoll performs better:

z On each call to select() or poll(), the kernel must check all of the file descriptors
specified in the call. By contrast, when we mark a descriptor to be monitored
with epoll_ctl(), the kernel records this fact in a list associated with the underlying
open file description, and whenever an I/O operation that makes the file
descriptor ready is performed, the kernel adds an item to the ready list for the
epoll descriptor. (An I/O event on a single open file description may cause
multiple file descriptors associated with that description to become ready.) Subse-
quent epoll_wait() calls simply fetch items from the ready list.

z Each time we call select() or poll(), we pass a data structure to the kernel that
identifies all of the file descriptors that are to be monitored, and, on return,
the kernel passes back a data structure describing the readiness of all of these
descriptors. By contrast, with epoll, we use epoll_ctl() to build up a data struc-
ture in kernel space that lists the set of file descriptors to be monitored. Once
this data structure has been built, each later call to epoll_wait() doesn’t need to
pass any information about file descriptors to the kernel, and the call returns
information about only those descriptors that are ready.

In addition to the above points, for select(), we must initialize the input data
structure prior to each call, and for both select() and poll(), we must inspect the
returned data structure to find out which of the N file descriptors are ready.
However, some testing showed that the time required for these other steps was

Table 63-9: Times taken by poll(), select(), and epoll for 100,000 monitoring operations

Number of descriptors
monitored (N)

poll() CPU time
(seconds)

select() CPU time
(seconds)

epoll CPU time
(seconds)

 10 0.61 0.73 0.41
 100 2.9 3.0 0.42
 1000 35 35 0.53
10000 990 930 0.66

1366 Chapter 63

insignificant compared to the time required for the system call to monitor N
descriptors. Table 63-9 doesn’t include the times for the inspection step.

Very roughly, we can say that for large values of N (the number of file descriptors
being monitored), the performance of select() and poll() scales linearly with N. We
start to see this behavior for the N = 100 and N = 1000 cases in Table 63-9. By the
time we reach N = 10000, the scaling has actually become worse than linear.

By contrast, epoll scales (linearly) according to the number of I/O events that
occur. The epoll API is thus particularly efficient in a scenario that is common in
servers that handle many simultaneous clients: of the many file descriptors being
monitored, most are idle; only a few descriptors are ready.

63.4.6 Edge-Triggered Notification
By default, the epoll mechanism provides level-triggered notification. By this, we
mean that epoll tells us whether an I/O operation can be performed on a file
descriptor without blocking. This is the same type of notification as is provided by
poll() and select().

The epoll API also allows for edge-triggered notification—that is, a call to
epoll_wait() tells us if there has been I/O activity on a file descriptor since the previous
call to epoll_wait() (or since the descriptor was opened, if there was no previous call).
Using epoll with edge-triggered notification is semantically similar to signal-driven
I/O, except that if multiple I/O events occur, epoll coalesces them into a single
notification returned via epoll_wait(); with signal-driven I/O, multiple signals may
be generated.

To employ edge-triggered notification, we specify the EPOLLET flag in ev.events
when calling epoll_ctl():

struct epoll_event ev;

ev.data.fd = fd
ev.events = EPOLLIN | EPOLLET;
if (epoll_ctl(epfd, EPOLL_CTL_ADD, fd, ev) == -1)
 errExit("epoll_ctl");

We illustrate the difference between level-triggered and edge-triggered epoll notifi-
cation using an example. Suppose that we are using epoll to monitor a socket for
input (EPOLLIN), and the following steps occur:

1. Input arrives on the socket.

2. We perform an epoll_wait(). This call will tell us that the socket is ready, regard-
less of whether we are employing level-triggered or edge-triggered notification.

3. We perform a second call to epoll_wait().

If we are employing level-triggered notification, then the second epoll_wait() call
will inform us that the socket is ready. If we are employing edge-triggered notifica-
tion, then the second call to epoll_wait() will block, because no new input has
arrived since the previous call to epoll_wait().

Al ternat ive I/O Models 1367

As we noted in Section 63.1.1, edge-triggered notification is usually employed
in conjunction with nonblocking file descriptors. Thus, the general framework for
using edge-triggered epoll notification is as follows:

1. Make all file descriptors that are to be monitored nonblocking.

2. Build the epoll interest list using epoll_ctl().

3. Handle I/O events using the following loop:

a) Retrieve a list of ready descriptors using epoll_wait().

b) For each file descriptor that is ready, process I/O until the relevant system
call (e.g., read(), write(), recv(), send(), or accept()) returns with the error EAGAIN
or EWOULDBLOCK.

Preventing file-descriptor starvation when using edge-triggered notification
Suppose that we are monitoring multiple file descriptors using edge-triggered noti-
fication, and that a ready file descriptor has a large amount (perhaps an endless
stream) of input available. If, after detecting that this file descriptor is ready, we
attempt to consume all of the input using nonblocking reads, then we risk starving
the other file descriptors of attention (i.e., it may be a long time before we again
check them for readiness and perform I/O on them). One solution to this problem
is for the application to maintain a list of file descriptors that have been notified as
being ready, and execute a loop that continuously performs the following actions:

1. Monitor the file descriptors using epoll_wait() and add ready descriptors to the
application list. If any file descriptors are already registered as being ready in
the application list, then the timeout for this monitoring step should be small
or 0, so that if no new file descriptors are ready, the application can quickly
proceed to the next step and service any file descriptors that are already known
to be ready.

2. Perform a limited amount of I/O on those file descriptors registered as being
ready in the application list (perhaps cycling through them in round-robin fash-
ion, rather than always starting from the beginning of the list after each call to
epoll_wait()). A file descriptor can be removed from the application list when
the relevant nonblocking I/O system call fails with the EAGAIN or EWOULDBLOCK error.

Although it requires extra programming work, this approach offers other benefits
in addition to preventing file-descriptor starvation. For example, we can include
other steps in the above loop, such as handling timers and accepting signals with
sigwaitinfo() (or similar).

Starvation considerations can also apply when using signal-driven I/O, since it
also presents an edge-triggered notification mechanism. By contrast, starvation
considerations don’t necessarily apply in applications employing a level-triggered
notification mechanism. This is because we can employ blocking file descriptors
with level-triggered notification and use a loop that continuously checks descrip-
tors for readiness, and then performs some I/O on the ready descriptors before
once more checking for ready file descriptors.

1368 Chapter 63

63.5 Waiting on Signals and File Descriptors
Sometimes, a process needs to simultaneously wait for I/O to become possible on
one of a set of file descriptors or for the delivery of a signal. We might attempt to
perform such an operation using select(), as shown in Listing 63-7.

Listing 63-7: Incorrect method of unblocking signals and calling select()

sig_atomic_t gotSig = 0;

void
handler(int sig)
{
 gotSig = 1;
}

int
main(int argc, char *argv[])
{
 struct sigaction sa;
 ...

 sa.sa_sigaction = handler;
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = 0;
 if (sigaction(SIGUSR1, &sa, NULL) == -1)
 errExit("sigaction");

 /* What if the signal is delivered now? */

 ready = select(nfds, &readfds, NULL, NULL, NULL);
 if (ready > 0) {
 printf("%d file descriptors ready\n", ready);
 } else if (ready == -1 && errno == EINTR) {
 if (gotSig)
 printf("Got signal\n");
 } else {
 /* Some other error */
 }

 ...
}

The problem with this code is that if the signal (SIGUSR1 in this example) arrives
after establishing the handler but before select() is called, then the select() call will
nevertheless block. (This is a form of race condition.) We now look at some solu-
tions to this problem.

Since version 2.6.27, Linux provides a further technique that can be used to
simultaneously wait on signals and file descriptors: the signalfd mechanism
described in Section 22.11. Using this mechanism, we can receive signals via a

Al ternat ive I/O Models 1369

file descriptor that is monitored (along with other file descriptors) using
select(), poll(), or epoll_wait().

63.5.1 The pselect() System Call
The pselect() system call performs a similar task to select(). The main semantic differ-
ence is an additional argument, sigmask, that specifies a set of signals to be
unmasked while the call is blocked.

More precisely, suppose we have the following pselect() call:

ready = pselect(nfds, &readfds, &writefds, &exceptfds, timeout, &sigmask);

This call is equivalent to atomically performing the following steps:

sigset_t origmask;

sigprocmask(SIG_SETMASK, &sigmask, &origmask);
ready = select(nfds, &readfds, &writefds, &exceptfds, timeout);
sigprocmask(SIG_SETMASK, &origmask, NULL); /* Restore signal mask */

Using pselect(), we can recode the first part of the body of our main program in
Listing 63-7 as shown in Listing 63-8.

Aside from the sigmask argument, select() and pselect() differ in the following
ways:

z The timeout argument to pselect() is a timespec structure (Section 23.4.2), which
allows the timeout to be specified with nanosecond (instead of microsecond)
precision.

z SUSv3 explicitly states that pselect() doesn’t modify the timeout argument on return.

If we specify the sigmask argument of pselect() as NULL, then pselect() is equivalent to
select() (i.e., it performs no manipulation of the process signal mask), except for the
differences just noted.

The pselect() interface is an invention of POSIX.1g, and is nowadays incorpo-
rated in SUSv3. It is not available on all UNIX implementations, and was added to
Linux only in kernel 2.6.16.

Previously, a pselect() library function was provided by glibc, but this implemen-
tation didn’t provide the atomicity guarantees that are required for the correct
operation of the call. Such guarantees can be provided only by a kernel
implementation of pselect().

#define _XOPEN_SOURCE 600
#include <sys/select.h>

int pselect(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
 struct timespec *timeout, const sigset_t *sigmask);

Returns number of ready file descriptors, 0 on timeout, or –1 on error

1370 Chapter 63

Listing 63-8: Using pselect()

 sigset_t emptyset, blockset;
 struct sigaction sa;

 sigemptyset(&blockset);
 sigaddset(&blockset, SIGUSR1);

 if (sigprocmask(SIG_BLOCK, &blockset, NULL) == -1)
 errExit("sigprocmask");

 sa.sa_sigaction = handler;
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_RESTART;
 if (sigaction(SIGUSR1, &sa, NULL) == -1)
 errExit("sigaction");

 sigemptyset(&emptyset);
 ready = pselect(nfds, &readfds, NULL, NULL, NULL, &emptyset);
 if (ready == -1)
 errExit("pselect");

The ppoll() and epoll_pwait() system calls

Linux 2.6.16 also added a new, nonstandard system call, ppoll(), whose relationship
to poll() is analogous to the relationship of pselect() to select(). Similarly, starting with
kernel 2.6.19, Linux also includes epoll_pwait(), providing an analogous extension
to epoll_wait(). See the ppoll(2) and epoll_pwait(2) manual pages for details.

63.5.2 The Self-Pipe Trick
Since pselect() is not widely implemented, portable applications must employ other
strategies to avoid race conditions when simultaneously waiting for signals and call-
ing select() on a set of file descriptors. One common solution is the following:

1. Create a pipe, and mark its read and write ends as nonblocking.

2. As well as monitoring all of the other file descriptors that are of interest,
include the read end of the pipe in the readfds set given to select().

3. Install a handler for the signal that is of interest. When this signal handler is
called, it writes a byte of data to the pipe. Note the following points about the
signal handler:

– The write end of the pipe was marked as nonblocking in the first step to
prevent the possibility that signals arrive so rapidly that repeated invocations
of the signal handler fill the pipe, with the result that the signal handler’s
write() (and thus the process itself) is blocked. (It doesn’t matter if a write
to a full pipe fails, since the previous writes will already have indicated the
delivery of the signal.)

Al ternat ive I/O Models 1371

– The signal handler is installed after creating the pipe, in order to prevent
the race condition that would occur if a signal was delivered before the
pipe was created.

– It is safe to use write() inside the signal handler, because it is one of the
async-signal-safe functions listed in Table 21-1, on page 426.

4. Place the select() call in a loop, so that it is restarted if interrupted by a signal
handler. (Restarting in this fashion is not strictly necessary; it merely means
that we can check for the arrival of a signal by inspecting readfds, rather than
checking for an EINTR error return.)

5. On successful completion of the select() call, we can determine whether a signal
arrived by checking if the file descriptor for the read end of the pipe is set in
readfds.

6. Whenever a signal has arrived, read all bytes that are in the pipe. Since multiple
signals may arrive, employ a loop that reads bytes until the (nonblocking) read()
fails with the error EAGAIN. After draining the pipe, perform whatever actions
must be taken in response to delivery of the signal.

This technique is commonly known as the self-pipe trick, and code demonstrating
this technique is shown in Listing 63-9.

Variations on this technique can equally be employed with poll() and epoll_wait().

Listing 63-9: Using the self-pipe trick
––– from altio/self_pipe.c
static int pfd[2]; /* File descriptors for pipe */

static void
handler(int sig)
{
 int savedErrno; /* In case we change 'errno' */

 savedErrno = errno;
 if (write(pfd[1], "x", 1) == -1 && errno != EAGAIN)
 errExit("write");
 errno = savedErrno;
}

int
main(int argc, char *argv[])
{
 fd_set readfds;
 int ready, nfds, flags;
 struct timeval timeout;
 struct timeval *pto;
 struct sigaction sa;
 char ch;

1372 Chapter 63

 /* ... Initialize 'timeout', 'readfds', and 'nfds' for select() */

 if (pipe(pfd) == -1)
 errExit("pipe");

 FD_SET(pfd[0], &readfds); /* Add read end of pipe to 'readfds' */
 nfds = max(nfds, pfd[0] + 1); /* And adjust 'nfds' if required */

 flags = fcntl(pfd[0], F_GETFL);
 if (flags == -1)
 errExit("fcntl-F_GETFL");
 flags |= O_NONBLOCK; /* Make read end nonblocking */
 if (fcntl(pfd[0], F_SETFL, flags) == -1)
 errExit("fcntl-F_SETFL");

 flags = fcntl(pfd[1], F_GETFL);
 if (flags == -1)
 errExit("fcntl-F_GETFL");
 flags |= O_NONBLOCK; /* Make write end nonblocking */
 if (fcntl(pfd[1], F_SETFL, flags) == -1)
 errExit("fcntl-F_SETFL");

 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_RESTART; /* Restart interrupted read()s */
 sa.sa_handler = handler;
 if (sigaction(SIGINT, &sa, NULL) == -1)

errExit("sigaction");

 while ((ready = select(nfds, &readfds, NULL, NULL, pto)) == -1 &&
 errno == EINTR)
 continue; /* Restart if interrupted by signal */
 if (ready == -1) /* Unexpected error */
 errExit("select");

 if (FD_ISSET(pfd[0], &readfds)) { /* Handler was called */
 printf("A signal was caught\n");

 for (;;) { /* Consume bytes from pipe */
 if (read(pfd[0], &ch, 1) == -1) {
 if (errno == EAGAIN)
 break; /* No more bytes */
 else
 errExit("read"); /* Some other error */
 }

 /* Perform any actions that should be taken in response to signal */
 }
 }

 /* Examine file descriptor sets returned by select() to see
 which other file descriptors are ready */

}

––– from altio/self_pipe.c

Al ternat ive I/O Models 1373

63.6 Summary
In this chapter, we explored various alternatives to the standard model for per-
forming I/O: I/O multiplexing (select() and poll()), signal-driven I/O, and the
Linux-specific epoll API. All of these mechanisms allow us to monitor multiple file
descriptors to see if I/O is possible on any of them. None of these mechanisms actually
performs I/O. Instead, once we have determined that a file descriptor is ready, we
use the traditional I/O system calls to perform the I/O.

The select() and poll() I/O multiplexing calls simultaneously monitor multiple
file descriptors to see if I/O is possible on any of the descriptors. With both system
calls, we pass a complete list of to-be-checked file descriptors to the kernel on each
system call, and the kernel returns a modified list indicating which descriptors are
ready. The fact that complete file descriptor lists are passed and checked on each
call means that select() and poll() perform poorly when monitoring large numbers of
file descriptors.

Signal-driven I/O allows a process to receive a signal when I/O is possible on a
file descriptor. To enable signal-driven I/O, we must establish a handler for the
SIGIO signal, set the owner process that is to receive the signal, and enable signal
generation by setting the O_ASYNC open file status flag. This mechanism offers signif-
icant performance benefits over I/O multiplexing when monitoring large numbers
of file descriptors. Linux allows us to change the signal used for notification, and if
we instead employ a realtime signal, then multiple notifications can be queued, and
the signal handler can use its siginfo_t argument to determine the file descriptor
and event type that generated the signal.

Like signal-driven I/O, epoll offers superior performance when monitoring
large numbers of file descriptors. The performance advantage of epoll (and signal-
driven I/O) derives from the fact that the kernel “remembers” the list of file
descriptors that a process is monitoring (by contrast with select() and poll(), where
each system call must again tell the kernel which file descriptors to check). The epoll
API has some notable advantages over the use of signal-driven I/O: we avoid the
complexities of dealing with signals and can specify which types of I/O events (e.g.,
input or output) are to be monitored.

In the course of this chapter, we drew a distinction between level-triggered and
edge-triggered readiness notification. With a level-triggered notification model, we
are informed whether I/O is currently possible on a file descriptor. By contrast,
edge-triggered notification informs us whether I/O activity has occurred on a file
descriptor since it was last monitored. The I/O multiplexing system calls offer a
level-triggered notification model; signal-driven I/O approximates to an edge-
triggered model; and epoll is capable of operating under either model (level-triggered
is the default). Edge-triggered notification is usually employed in conjunction with
nonblocking I/O.

We concluded the chapter by looking at a problem that sometimes faces pro-
grams that monitor multiple file descriptors: how to simultaneously also wait for
the delivery of a signal. The usual solution to this problem is the so-called self-pipe
trick, whereby a handler for the signal writes a byte to a pipe whose read end is
included among the set of monitored file descriptors. SUSv3 specifies pselect(), a vari-
ation of select() that provides another solution to this problem. However, pselect() is
not available on all UNIX implementations. Linux also provides the analogous (but
nonstandard) ppoll() and epoll_pwait().

1374 Chapter 63

Further information
[Stevens et al., 2004] describes I/O multiplexing and signal-driven I/O, with partic-
ular emphasis on the use of these mechanisms with sockets. [Gammo et al, 2004] is
a paper comparing the performance of select(), poll(), and epoll.

A particularly interesting online resource is at http://www.kegel.com/c10k.html.
Written by Dan Kegel, and entitled “The C10K problem,” this web page explores
the issues facing developers of web servers designed to simultaneously serve tens of
thousands of clients. The web page includes a host of links to related information.

63.7 Exercises
63-1. Modify the program in Listing 63-2 (poll_pipes.c) to use select() instead of poll().

63-2. Write an echo server (see Sections 60.2 and 60.3) that handles both TCP and UDP
clients. To do this, the server must create both a listening TCP socket and a UDP
socket, and then monitor both sockets using one of the techniques described in
this chapter.

63-3. Section 63.5 noted that select() can’t be used to wait on both signals and file
descriptors, and described a solution using a signal handler and a pipe. A related
problem exists when a program needs to wait for input on both a file descriptor
and a System V message queue (since System V message queues don’t use file
descriptors). One solution is to fork a separate child process that copies each
message from the queue to a pipe included among the file descriptors monitored
by the parent. Write a program that uses this scheme with select() to monitor input
from both the terminal and a message queue.

63-4. The last step of the description of the self-pipe technique in Section 63.5.2 stated
that the program should first drain the pipe, and then perform any actions that
should be taken in response to the signal. What might happen if these substeps
were reversed?

63-5. Modify the program in Listing 63-9 (self_pipe.c) to use poll() instead of select().

63-6. Write a program that uses epoll_create() to create an epoll instance and then
immediately waits on the returned file descriptor using epoll_wait(). When, as in this
case, epoll_wait() is given an epoll file descriptor with an empty interest list, what
happens? Why might this be useful?

63-7. Suppose we have an epoll file descriptor that is monitoring multiple file descriptors,
all of which are always ready. If we perform a series of epoll_wait() calls in which
maxevents is much smaller than the number of ready file descriptors (e.g., maxevents
is 1), without performing all possible I/O on the ready descriptors between calls,
what descriptor(s) does epoll_wait() return in each call? Write a program to
determine the answer. (For the purposes of this experiment, it suffices to perform
no I/O between the epoll_wait() system calls.) Why might this behavior be useful?

63-8. Modify the program in Listing 63-3 (demo_sigio.c) to use a realtime signal instead of
SIGIO. Modify the signal handler to accept a siginfo_t argument and display the
values of the si_fd and si_code fields of this structure.

