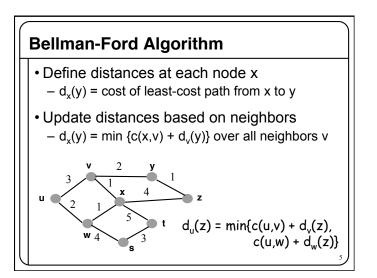
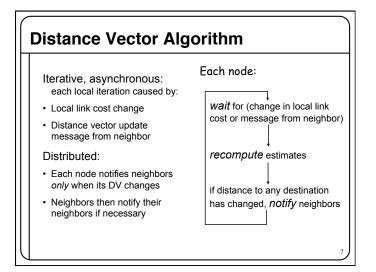
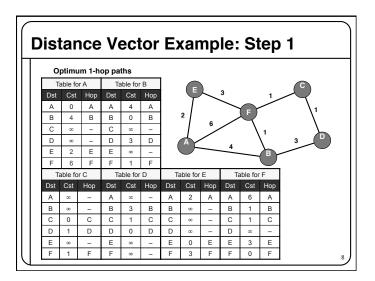

Goals of Today's Lecture

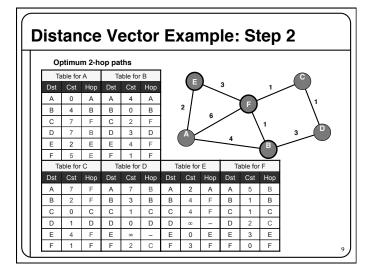
- Distance-vector routing
 -Bellman-Ford algorithm
 Destring lafered for Destrict
 - -Routing Information Protocol (RIP)
- Path-vector routing
 - -Faster convergence than distance vector
 - -More flexibility in selecting paths


Interdomain routing

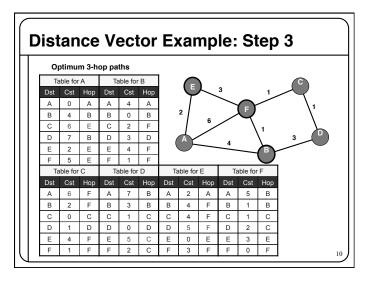
- -Autonomous Systems (AS)
- -Border Gateway Protocol (BGP)

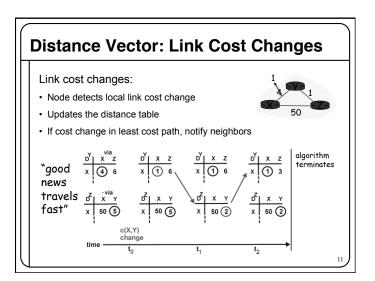


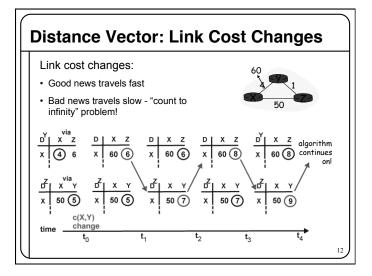


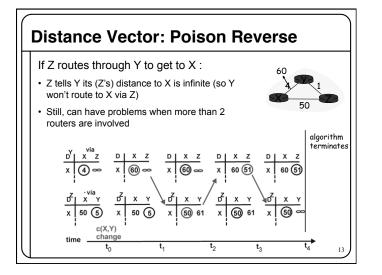

Distance Vector Algorithm

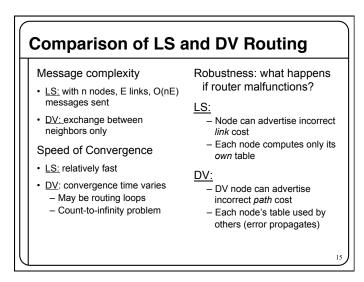
- c(x,v) = cost for direct link from x to v
 Node x maintains costs of direct links c(x,v)
- D_x(y) = estimate of least cost from x to y
 Node x maintains distance vector D_x = [D_x(y): y ∈ N]
- Node x maintains its neighbors' distance vectors – For each neighbor v, x maintains $\mathbf{D}_v = [D_v(y): y \in N]$
- Each node v periodically sends D_v to its neighbors – And neighbors update their own distance vectors $-D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$
- Over time, the distance vector D_x converges











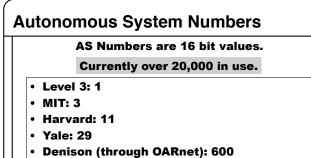
Routing Information Protocol (RIP)

- Distance vector protocol
 - Nodes send distance vectors every 30 seconds
 - $-\dots$ or, when an update causes a change in routing
- Link costs in RIP
 - -All links have cost 1
 - -Valid distances of 1 through 15
 - -... with 16 representing infinity
- Small "infinity" \rightarrow smaller "counting to infinity" problem

14

 RIP is limited to fairly small networks – E.g., often used in small campus networks

Similarities of LS and DV Routing


- Shortest-path routing
 - -Metric-based, using link weights
 - -Routers share a common view of how good a path is
- As such, commonly used *inside* an organization
 - RIP and OSPF are mostly used as *intra*domain protocols
 E.g., smaller and older networks use RIP, and AT&T (i.e. large network) uses OSPF
- But the Internet is a "network of networks" - How to stitch the many networks together?
 - -When networks may not have common goals
 - \dots and may not want to share information

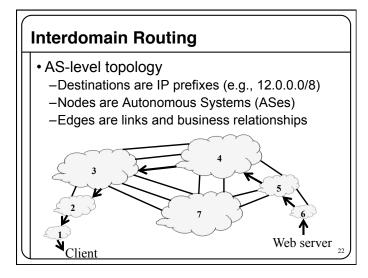
Interdomain Routing and Autonomous Systems (ASes)

17

Interdomain Routing

- Internet is divided into Autonomous Systems
 - Distinct regions of administrative control
 - -Routers/links managed by a single "institution"
 - Service provider, company, university, ...
- Hierarchy of Autonomous Systems
 - -Large, tier-1 provider with a nationwide backbone
 - Medium-sized regional provider with smaller backbone
 - Small network run by a single company or university
- Interaction between Autonomous Systems
 - Internal topology is not shared between ASes
 - -... but, neighboring ASes interact to coordinate routing 18

- AT&T: 7018, 6341, 5074, ...
- UUNET: 701, 702, 284, 12199, ...
- Sprint: 1239, 1240, 6211, 6242, ...


19

• ...

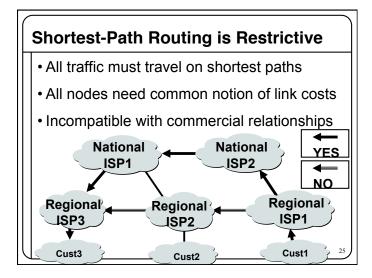
whois –h whois.arin.net as600		
OrgName: OARnet OrgID: OAR Address: 1224 Kinnear Road Address: Columbus City: Columbus StateProv: OH PostalCode: 43212-1198 Country: US		
ASNumber: 600 ASName: OARNET-AS ASHandle: AS600 Comment: RegDate: 1990-03-11 Updated: 1996-05-14		
RTechHandle: GS1050-ARIN RTechName: Steele, Greg RTechPhone: +1-800-627-6420 RTechEmail: hostmaster@oar.net 	20	

AS Number Trivia

- AS number is a 16-bit quantity -So, 65,536 unique AS numbers
- Some are reserved (e.g., for private AS numbers) - So, only 64,510 are available for public use
- Managed by Internet Assigned Numbers Authority - Gives blocks of 1024 to Regional Internet Registries -IANA has allocated 39,934 AS numbers to RIRs (Jan'06)
- RIRs assign AS numbers to institutions
 - -RIRs have assigned 34,827 (Jan'06)
 - -Only 21,191 are visible in interdomain routing (Jan'06)
- Recently started assigning 32-bit AS #s (2007)

Challenges for Interdomain Routing

Scale

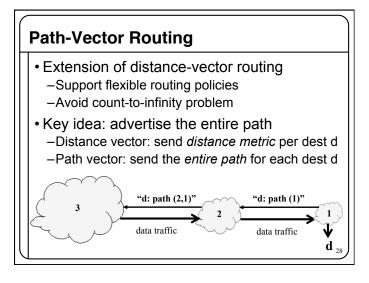

- -Prefixes: 200,000, and growing
- -ASes: 20,000+ visible ones, and 40K allocated
- -Routers: at least in the millions...
- Privacy

-ASes don't want to divulge internal topologies -... or their business relationships with neighbors

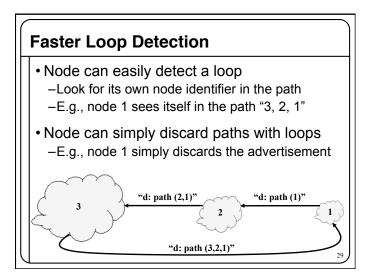
23

- Policy
 - -No Internet-wide notion of a link cost metric
 - -Need control over where you send traffic
 - \hdots and who can send traffic through you

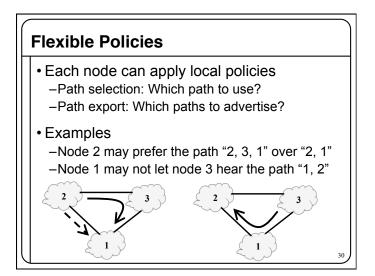
Path-Vector Routing


Link-State Routing is Problematic

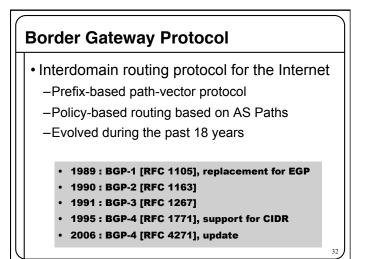
- Topology information is flooded

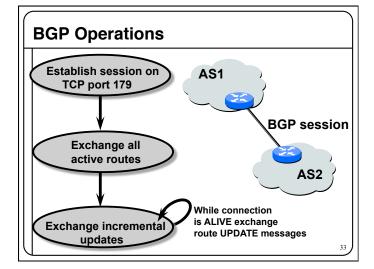

 High bandwidth and storage overhead
 Forces nodes to divulge sensitive information
- Entire path computed locally per node –High processing overhead in a large network
- Minimizes some notion of total distance –Works only if policy is shared and uniform
- Typically used only inside an AS -E.g., OSPF and IS-IS

Distance Vector is on the Right Track


- Advantages
 - Hides details of the network topology
 - -Nodes determine only "next hop" toward the dest
- Disadvantages
 - -Minimizes some notion of total distance, which is difficult in an interdomain setting
 - -Slow convergence due to the counting-to-infinity problem ("bad news travels slowly")
- Idea: extend the notion of a distance vector –To make it easier to detect loops

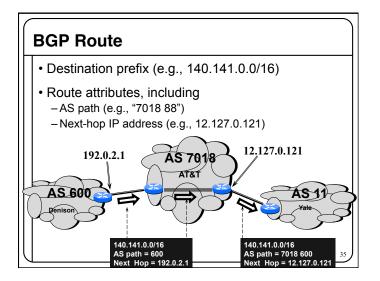


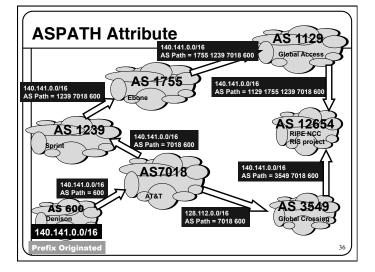




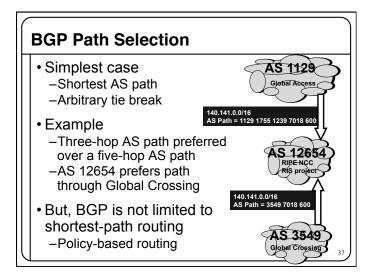
Incremental Protocol

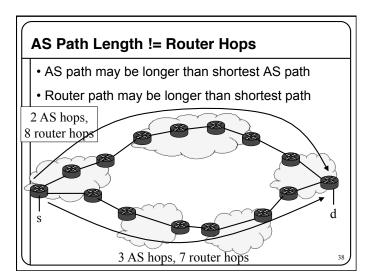
- A node learns multiple paths to destination
 - -Stores all of the routes in a routing table
 - -Applies policy to select a single active route
 - \ldots and may advertise the route to its neighbors

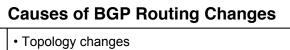

Incremental updates

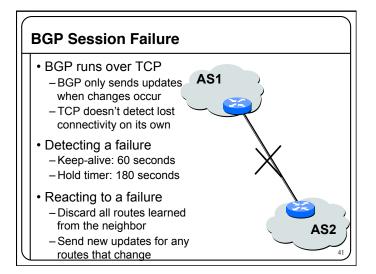

-Announcement

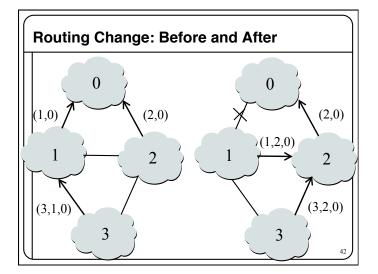
- Upon selecting a new active route, add node id to path
- $\ensuremath{\cdot}\xspace\ldots$ and (optionally) advertise to each neighbor

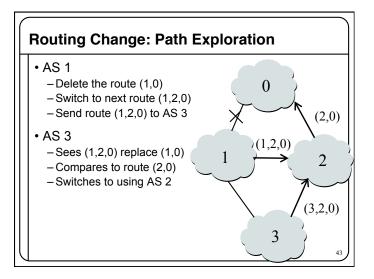

-Withdrawal


- If the active route is no longer available
- ${\ensuremath{\, \cdot \, }}$... send a withdrawal message to the neighbors









- -Equipment going up or down
- Deployment of new routers or sessions
- BGP session failures
 - Due to equipment failures, maintenance, etc.
 - Or, due to congestion on the physical path
- Changes in routing policy
 - Changes in preferences in the routes
 - Changes in whether the route is exported
- Persistent protocol oscillation
 - $-\operatorname{Conflicts}$ between policies in different ASes

Routing Change: Path Exploration			
Initial situation Destination 0 is alive All ASes use direct path	$\begin{array}{c ccc} \hline (1,0) & \hline (2,0) \\ (1,2,0) & (2,1,0) \\ (1,3,0) & (2,3,0) \\ & (2,1,3,0) \end{array}$		
When destination dies All ASes lose direct path All switch to longer paths Eventually withdrawn			
• E.g., AS 2 $-(2,0) \Rightarrow (2,1,0)$ $-(2,1,0) \Rightarrow (2,3,0)$ $-(2,3,0) \Rightarrow (2,1,3,0)$ $-(2,1,3,0) \Rightarrow null$	$\begin{array}{c} 1 \\ 3 \\ \hline (3,0) \\ (3,1,0) \\ (3,2,0) \end{array}$		

BGP Converges Slowly			
Path vector avoids count-to-infinity –But, ASes still must explore many alternate paths – to find the highest-ranked path that is still available			
 Fortunately, in practice Most popular destinations have very stable BGP routes And most instability lies in a few unpopular destinations 			
 Still, lower BGP convergence delay is a goal Can be tens of seconds to tens of minutes High for important interactive applications or even conventional application, like Web browsing 			
45			

Conclusions

- Distance-vector routing
 - Compute path costs based on neighbors' path costs
 - Bellman-Ford algorithm & Routing Information Protocol
- Path-vector routing
 - Faster convergence than distance-vector protocols
 - $-\operatorname{While}$ hiding information and enabling flexible policy

Interdomain routing

- -Autonomous Systems (ASes)
- Policy-based path-vector routing