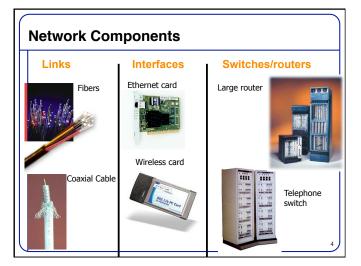


CS 375: Computer Networks

Dr. Thomas C. Bressoud

Goals of Today's Lecture

- Connectivity
 - -Links and nodes
 - Circuit switching
 - Packet switching
- IP service model
 - Best-effort packet delivery
 - IP as the Internet's "narrow waist"
 - Design philosophy of IP
- IP packet structure
 - Fields in the IP header
 - Traceroute using TTL field
 - Source-address spoofing


2

Simple Network: Nodes and a Link

- Node: computer
 - End host: general-purpose computer, cell phone, PDA
 - Network node: switch or router
- Link: physical medium connecting nodes
 - -Twisted pair: the wire that connects to telephones
 - Coaxial cable: the wire that connects to TV sets
 - Optical fiber: high-bandwidth long-distance links
 - Space: propagation of radio waves, microwaves, ...

_	 	

Links: Delay and Bandwidth

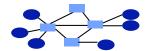
- Delay
 - -Latency for propagating data along the link
 - -Corresponds to the "length" of the link
 - -Typically measured in seconds
- Bandwidth
 - -Amount of data sent (or received) per unit time
 - -Corresponds to the "width" of the link
 - -Typically measured in bits per second

bandwidth

delay

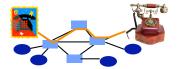
Connecting More Than Two Hosts

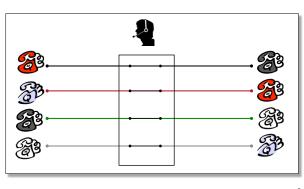
- Multi-access link: Ethernet, wireless
 - -Single physical link, shared by multiple nodes
 - -Limitations on distance and number of nodes
- Point-to-point links: fiber-optic cable
 - -Only two nodes (separate link per pair of nodes)
 - -Limitations on the number of adapters per node



multi-access link

point-to-point links


Beyond Directly-Connected Networks


- Switched network
 - -End hosts at the edge
 - -Network nodes that switch traffic
 - -Links between the nodes
- Multiplexing
 - -Many end hosts communicate over the network
 - -Traffic shares access to the same links

Circuit Switching (e.g., Phone Network)

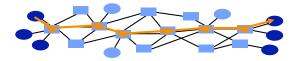
- Source establishes connection to destination
 - –Node along the path store connection info
 - -Nodes may reserve resources for the connection
- Source sends data over the connection
 - -No destination address, since nodes know path
- Source tears down connection when done

Circuit Switching With Human Operator

-	

Advantages of Circuit Switching

- · Guaranteed bandwidth
 - Predictable communication performance
 - Not "best-effort" delivery with no real guarantees
- Simple abstraction
 - Reliable communication channel between hosts
 - No worries about lost or out-of-order packets
- Simple forwarding
 - Forwarding based on time slot or frequency
 - No need to inspect a packet header
- · Low per-packet overhead
 - Forwarding based on time slot or frequency
 - -No IP (and TCP/UDP) header on each packet


Disadvantages of Circuit Switching

- · Wasted bandwidth
 - Bursty traffic leads to idle connection during silent period
 - Unable to achieve gains from statistical multiplexing
- Blocked connections
 - Connection refused when resources are not sufficient
 - Unable to offer "okay" service to everybody
- Connection set-up delay
 - No communication until the connection is set up
 - Unable to avoid extra latency for small data transfers
- Network state
 - Network nodes must store per-connection information
 - Unable to avoid per-connection storage and state

11	
od	
12	
12)	

Packet Switching (e.g., Internet)

- Data traffic divided into packets
 - –Each packet contains a header (with address)
- Packets travel separately through network
 - -Packet forwarding based on the header
 - -Network nodes may store packets temporarily
- Destination reconstructs the message

13

Packet Switching: Statistical Multiplexing Packets Packets

IP Service: Best-Effort Packet Delivery

- Packet switching
 - -Divide messages into a sequence of packets
 - -Headers with source and destination address
- Best-effort delivery
 - -Packets may be lost
 - -Packets may be corrupted

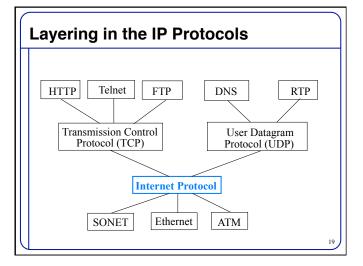
•	

IP Service Model: Why Packets?

- Data traffic is bursty
 - -Logging in to remote machines
 - Exchanging e-mail messages
- Don't want to waste bandwidth
 - No traffic exchanged during idle periods
- Better to allow multiplexing
 - Different transfers share access to same links
- Packets can be delivered by most anything
 RFC 1149: IP Datagrams over Avian Carriers (aka birds)
- · ... still, packet switching can be inefficient
 - -Extra header bits on every packet

1.0

IP Service Model: Why Best-Effort?


- IP means never having to say you're sorry...
 - Don't need to reserve bandwidth and memory
 - Don't need to do error detection & correction
 - Don't need to remember from one packet to next
- Easier to survive failures
 - Transient disruptions are okay during failover
- ... but, applications *do* want efficient, accurate transfer of data in order, in a timely fashion

17

IP Service: Best-Effort is Enough

- No error detection or correction
 - Higher-level protocol can provide error checking
- Successive packets may not follow the same path
 - Not a problem as long as packets reach the destination
- Packets can be delivered out-of-order
 - Receiver can put packets back in order (if necessary)
- Packets may be lost or arbitrarily delayed
 - Sender can send the packets again (if desired)
- No network congestion control (beyond "drop")
 - Sender can slow down in response to loss or delay

-

History: Why IP Packets?

- IP proposed in the early 1970s
 - Defense Advanced Research Project Agency (DARPA)
- Goal: connect existing networks
 - To develop an effective technique for multiplexed utilization of existing interconnected networks
 - -E.g., connect packet radio networks to the ARPAnet
- Motivating applications
- Remote login to server machines
- Inherently bursty traffic with long silent periods
- Prior ARPAnet experience with packet switching
 - Previous DARPA project
 - Demonstrated store-and-forward packet switching

20

Other Main Driving Goals (In Order)

- Communication should continue despite failures
 - Survive equipment failure or physical attack
 - Traffic between two hosts continue on another path
- Support multiple types of communication services
 - Differing requirements for speed, latency, & reliability
 - Bidirectional reliable delivery vs. message service
- Accommodate a variety of networks
 - Both military and commercial facilities
 - Minimize assumptions about the underlying network

21		
_		

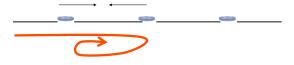
Other Driving Goals, Somewhat Met

- Permit distributed management of resources
 - Nodes managed by different institutions
 - -... though this is still rather challenging
- Cost-effectiveness
 - Statistical multiplexing through packet switching
 - -... though packet headers and retransmissions wasteful
- Ease of attaching new hosts
 - Standard implementations of end-host protocols
 - -... though still need a fair amount of end-host software
- Accountability for use of resources
 - Monitoring functions in the nodes
 - $-\dots$ though this is still fairly limited and immature

22

IP Header: Version, Length, ToS

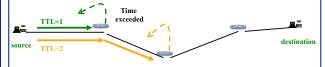
- Version number (4 bits)
 - Indicates the version of the IP protocol
 - Necessary to know what other fields to expect
 - -Typically "4" (for IPv4), and sometimes "6" (for IPv6)
- Header length (4 bits)
 - Number of 32-bit words in the header
 - Typically "5" (for a 20-byte IPv4 header)
 - -Can be more when "IP options" are used
- Type-of-Service (8 bits)
 - Allow packets to be treated differently based on needs
 - -E.g., low delay for audio, high bandwidth for bulk transfer


IP Header: Length, Fragments, TTL

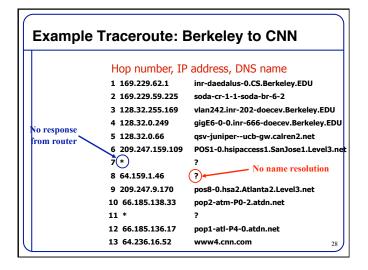
- Total length (16 bits)
 - Number of bytes in the packet
 - Maximum size is 63,535 bytes (2¹⁶ -1)
 - -... though underlying links may impose harder limits
- Fragmentation information (32 bits)
 - -Packet identifier, flags, and fragment offset
 - Supports dividing a large IP packet into fragments
 - -... in case a link cannot handle a large IP packet
- Time-To-Live (8 bits)
 - Used to identify packets stuck in forwarding loops
 - -... and eventually discard them from the network

25

IP Header: More on Time-to-Live (TTL)


- Potential robustness problem
 - Forwarding loops can cause packets to cycle forever
 - Confusing if the packet arrives much later

- Time-to-live field in packet header
- -TTL field decremented by each router on the path
- Packet is discarded when TTL field reaches 0...
- -...and "time exceeded" message is sent to the source


IP Header: Use of TTL in Traceroute

- Time-To-Live field in IP packet header
 - Source sends a packet with a TTL of n
 - Each router along the path decrements the TTL
 - "TTL exceeded" sent when TTL reaches 0
- Traceroute tool exploits this TTL behavior

Send packets with TTL=1, 2, ... and record source of "time exceeded" message

-	

Protocol (8 bits) -Identifies the higher-level protocol • E.g., "6" for the Transmission Control Protocol (TCP) • E.g., "17" for the User Datagram Protocol (UDP) -Important for demultiplexing at receiving host • Indicates what kind of header to expect next protocol=6 protocol=17 IP header TCP header UDP header

• Checksum (16 bits) -Sum of all 16-bit words in the IP packet header -If any bits of the header are corrupted in transit -... the checksum won't match at receiving host -Receiving host discards corrupted packets • Sending host will retransmit the packet, if needed 134 + 212 = 346 134 + 216 = 350 Mismatch! 30

IP Header: To and From Addresses

- Two IP addresses
 - -Source IP address (32 bits)
 - -Destination IP address (32 bits)
- Destination address
 - -Unique identifier for the receiving host
 - -Allows each node to make forwarding decisions
- Source address
 - -Unique identifier for the sending host
 - -Recipient can decide whether to accept packet
 - -Enables recipient to send a reply back to source,

Source Address: What if Source Lies?

- · Source address should be the sending host
 - -But, who's checking, anyway?
 - You could send packets with any source you want
- Why would someone want to do this?
 - Launch a denial-of-service attack
 - Send excessive packets to the destination
 - $\bullet\,\,\dots$ to overload the node, or the links leading to the node
 - Evade detection by "spoofing"
 - But, the victim could identify you by the source address
 - $\bullet\,$ So, you can put someone else's source address in the packets
 - Also, an attack against the spoofed host
 - Spoofed host is wrongly blamed
 - Spoofed host may receive return traffic from the receiver

32

Summary: Packet Switching Review

- Efficient
 - Can send from any input that is ready
- General
 - Multiple types of applications
- Accommodates bursty traffic
 - Addition of queues
- Store and forward
 - Packets are self contained units
 - Can use alternate paths reordering
- Contention (i.e., no isolation)
 - Congestion
 - Delay

3:

Next Lecture

- IP routers
 - -Packet forwarding
 - -Components of a router
- Reading for this week
 - -Chapter 3: Sections 3.1 and 3.4
 - -Chapter 4: Sections 4.1.1-4.1.4