
1

1

Networked Applications: Sockets

CS 375: Computer Networks

Spring 2009

Thomas Bressoud

2

Goals of Todayʼs Lecture

• Client-server paradigm
– End systems
– Clients and servers

• Sockets and Network Programming
– Socket abstraction
– Socket programming in UNIX
– struct sockaddr and getaddrinfo
– Endian-ness
– Streams
– select

3

End System: Computer on the ʻNet

Internet

Also known as a “host”…

2

4

Clients and Servers

• Client program
– Running on end host
– Requests service
– E.g., Web browser

• Server program
– Running on end host
– Provides service
– E.g., Web server

GET /index.html

“Site under construction”

5

Clients Are Not Necessarily Human

• Example: Web crawler (or spider)
– Automated client program
– Tries to discover & download many Web pages
– Forms the basis of search engines like Google

• Spider client
– Start with a base list of popular Web sites
– Download the Web pages
– Parse the HTML files to extract hypertext links
– Download these Web pages, too
– And repeat, and repeat, and repeat…

6

Client-Server Communication

• Client “sometimes on”
– Initiates a request to the

server when interested
– E.g., Web browser on

your laptop or cell phone
– Doesn’t communicate

directly with other clients
– Needs to know the

server’s address

• Server is “always on”
– Services requests from

many client hosts
– E.g., Web server for the

www.cnn.com Web site
– Doesn’t initiate contact

with the clients
– Needs a fixed, well-

known address

3

7

Peer-to-Peer Communication

• No always-on server at the center of it all
– Hosts can come and go, and change addresses
– Hosts may have a different address each time

• Example: peer-to-peer file sharing
– Any host can request files, send files, query to

find a file’s location, respond to queries, …
– Scalability by harnessing millions of peers
– Each peer acting as both a client and server

8

Client and Server Processes

• Program vs. process
– Program: collection of code
– Process: a running program on a host

• Communication between processes
– Same end host: inter-process communication

  Governed by the operating system on the end host
– Different end hosts: exchanging messages

  Governed by the network protocols

• Client and server processes
– Client process: process that initiates communication
– Server process: process that waits to be contacted

9

Delivering the Data: Division of Labor

• Network
– Deliver data packet to the destination host
– Based on the destination IP address

• Operating system
– Deliver data to the destination socket
– Based on the destination port number

• Application
– Read data from and write data to the socket
– Interpret the data (e.g., render a Web page)

4

10

Socket: End Point of Communication

• Sending message from one process to another
– Message must traverse the underlying network

• Process sends and receives through a “socket”
– In essence, the doorway leading in/out of the house

• Socket as an Application Programming Interface
– Supports the creation of network applications

socket socket

User process User process

Operating
System

Operating
System

11

Identifying the Receiving Process

• Sending process must identify the receiver
– The receiving end host machine
– The specific socket in a process on that machine

• Receiving host
– Destination address that uniquely identifies the host
– An IP address is a 32-bit quantity

• Receiving socket
– Host may be running many different processes
– Destination port that uniquely identifies the socket
– A port number is a 16-bit quantity

12

Using Ports to Identify Services

Web server

(port 80)

Client host

Server host 128.2.194.242

Echo server

(port 7)

Service request for

128.2.194.242:80

(i.e., the Web server)

Web server

(port 80)

Echo server

(port 7)

Service request for

128.2.194.242:7

(i.e., the echo server)

OS

OS

Client

Client

5

13

Knowing What Port Number To Use

• Popular applications have well-known ports
– E.g., port 80 for Web and port 25 for e-mail
– See http://www.iana.org/assignments/port-numbers

• Well-known vs. ephemeral ports
– Server has a well-known port (e.g., port 80)

  Between 0 and 1023
– Client picks an unused ephemeral (i.e., temporary) port

  Between 1024 and 65535

• Uniquely identifying the traffic between the hosts
– Two IP addresses and two port numbers
– Underlying transport protocol (e.g., TCP or UDP)

14

Port Numbers are Unique on Each Host

• Port number uniquely identifies the socket
– Cannot use same port number twice with same address
– Otherwise, the OS can’t demultiplex packets correctly

• Operating system enforces uniqueness
– OS keeps track of which port numbers are in use
– Doesn’t let the second program use the port number

• Example: two Web servers running on a machine
– They cannot both use port “80”, the standard port #
– So, the second one might use a non-standard port #
– E.g., http://www.cnn.com:8080
– Can also have one process with multiple ports

15

UNIX Socket API

• Socket interface
– Originally provided in Berkeley UNIX
– Later adopted by all popular operating systems
– Simplifies porting applications to different OSes

• In UNIX, everything is like a file
– All input is like reading a file
– All output is like writing a file
– File is represented by an integer file descriptor

• API implemented as system calls
– E.g., connect, read, write, close, …

6

16

Typical Client Program

• Prepare to communicate
– Create a socket
– Determine server address and port number
– Initiate the connection to the server

• Exchange data with the server
– Write data to the socket
– Read data from the socket
– Do stuff with the data (e.g., render a Web page)

• Close the socket

17

Servers Differ From Clients

• Passive open
– Prepare to accept connections
– … but don’t actually establish
– … until hearing from a client

• Hearing from multiple clients
– Allowing a backlog of waiting clients
– ... in case several try to communicate at once

• Create a socket for each client
– Upon accepting a new client
– … create a new socket for the communication

18

Typical Server Program

• Prepare to communicate
– Create a socket
– Associate local address and port with the socket

• Wait to hear from a client (passive open)
– Indicate how many clients-in-waiting to permit
– Accept an incoming connection from a client

• Exchange data with the client over new socket
– Receive data from the socket
– Do stuff to handle the request (e.g., get a file)
– Send data to the socket
– Close the socket

• Repeat with the next connection request

7

19

Putting it All Together

socket()

bind()

listen()

accept()

read()

write()

Server

block

process
request

Client

socket()

connect()

write()

establish

connection

send request

read()
send response

getaddrinfo()

20

Client Creating a Socket: socket()

• Operation to create a socket
– int socket(int domain, int type, int protocol)
– Returns a descriptor (or handle) for the socket
– Originally designed to support any protocol suite

• Domain: protocol family
– PF_INET for the Internet

• Type: semantics of the communication
– SOCK_STREAM: reliable byte stream
– SOCK_DGRAM: message-oriented service

• Protocol: specific protocol
– UNSPEC: unspecified
– (PF_INET and SOCK_STREAM already implies TCP)

21

Client: Learning Server Address/Port

• Server typically known by name and service
– E.g., “www.cnn.com” and “http”

• Need to translate into IP address and port #
– E.g., “64.236.16.20” and “80”

• Translating the server’s name to an address
– struct hostent *gethostbyname(char *name)
– Argument: host name (e.g., “www.cnn.com”)
– Returns a structure that includes the host address

•  Identifying the service’s port number
– struct servent *getservbyname(char *name, char *proto)
– Arguments: service (e.g., “ftp”) and protocol (e.g., “tcp”)

• Now we can use getaddrinfo() to do both

8

22

Client: Connecting Socket to the Server

• Client contacts the server to establish connection
– Associate the socket with the server address/port
– Acquire a local port number (assigned by the OS)
– Request connection to server, who will hopefully accept

• Establishing the connection
– int connect(int sockfd, struct sockaddr *server_address,

socketlen_t addrlen)
– Arguments: socket descriptor, server address, and

address size
– Returns 0 on success, and -1 if an error occurs

23

Client: Sending and Receiving Data

• Sending data
– ssize_t send(int sockfd, void *buf, size_t len)
– Arguments: socket descriptor, pointer to buffer of data to

send, and length of the buffer
– Returns the number of characters written, and -1 on error

• Receiving data
– ssize_t recv(int sockfd, void *buf, size_t len)
– Arguments: socket descriptor, pointer to buffer to place

the data, size of the buffer
– Returns the number of characters read (where 0 implies

“end of file”), and -1 on error

• Closing the socket
– int close(int sockfd)

24

Server: Server Preparing its Socket

• Server creates a socket and binds address/port
– Server creates a socket, just like the client does
– Server associates the socket with the port number

 (and hopefully no other process is already using it!)

• Create a socket
– int socket(int domain, int type, int protocol)

• Bind socket to the local address and port number
– int bind (int sockfd, struct sockaddr *my_addr, socklen_t

addrlen)
– Arguments: socket descriptor, server address, address

length
– Returns 0 on success, and -1 if an error occurs

9

25

Server: Allowing Clients to Wait

• Many client requests may arrive
– Server cannot handle them all at the same time
– Server could reject the requests, or let them wait

• Define how many connections can be pending
– int listen(int sockfd, int backlog)
– Arguments: socket descriptor and acceptable backlog
– Returns a 0 on success, and -1 on error

• What if too many clients arrive?
– Some requests don’t get through
– The Internet makes no promises…
– And the client can always try again

26

Server: Accepting Client Connection

• Now all the server can do is wait…
– Waits for connection request to arrive
– Blocking until the request arrives
– And then accepting the new request

• Accept a new connection from a client
– int accept(int sockfd, struct sockaddr *addr, socketlen_t

*addrlen)
– Arguments: socket descriptor, structure that will provide

client address and port, and length of the structure
– Returns descriptor for a new socket for this connection

27

Server: One Request at a Time?

• Serializing requests is inefficient
– Server can process just one request at a time
– All other clients must wait until previous one is done

• May need to time share the server machine
– Alternate/multiplex between servicing different requests

  Do a little work on one request, then switch to another
  Small tasks, like reading HTTP request, locating the associated

file, reading the disk, transmitting parts of the response, etc.

– Or, start a new process to handle each request
  Allow the operating system to share the CPU across processes

– Or, some hybrid of these two approaches

10

28

Client and Server: Cleaning House

• Once the connection is open
– Both sides and read and write
– Two unidirectional streams of data
– In practice, client writes first, and server reads
– … then server writes, and client reads, and so on

• Closing down the connection
– Either side can close the connection
– … using the close() system call

• What about the data still “in flight”
– Data in flight still reaches the other end
– So, server can close() before client finishing reading

29

One Annoying Thing: Byte Order

• Hosts differ in how they store data
– E.g., four-byte number (byte3, byte2, byte1, byte0)

• Little endian (“little end comes first”)  Intel PCs!!!
– Low-order byte stored at the lowest memory location
– Byte0, byte1, byte2, byte3

• Big endian (“big end comes first”)
– High-order byte stored at lowest memory location
– Byte3, byte2, byte1, byte 0

• Makes it more difficult to write portable code
– Client may be big or little endian machine
– Server may be big or little endian machine

30

+0 +1 +2 +3

1000

1004

1008

100C

78

+0 +1

1000

1002

1004

1006

78

+3 +2 +1 +0

1000

1004

1008

100C

78

+1 +0

1000

1002

1004

1006

78 1000

1001

1002

1003

78

Endian Example: Where is the Byte?

31 24 23 16 15 8 7 0

8 bits memory 16 bits Memory 32 bits Memory

1000

1001

1002

1003

Little-
Endian

Big-
Endian

78

1 2 3 4 5 6 7 8

11

31

IP is Big Endian

• But, what byte order is used “on the wire”
– That is, what do the network protocol use?

• The Internet Protocols picked one convention
– IP is big endian (aka “network byte order”)

• Writing portable code require conversion
– Use htons() and htonl() to convert to network byte order
– Use ntohs() and ntohl() to convert to host order

• Hides details of what kind of machine you’re on
– Use the system calls when sending/receiving data

structures longer than one byte

32

Why Canʼt Sockets Hide These Details?

• Dealing with endian differences is tedious
– Couldn’t the socket implementation deal with this
– … by swapping the bytes as needed?

• No, swapping depends on the data type
– Two-byte short int: (byte 1, byte 0) vs. (byte 0, byte 1)
– Four-byte long int: (byte 3, byte 2, byte 1, byte 0) vs.

(byte 0, byte 1, byte 2, byte 3)
– String of one-byte charters: (char 0, char 1, char 2, …) in

both cases

• Socket layer doesn’t know the data types
– Sees the data as simply a buffer pointer and a length
– Doesn’t have enough information to do the swapping

33

Wanna See Real Clients and Servers?

• Apache Web server
– Open source server first released in 1995
– Name derives from “a patchy server” ;-)
– Software available online at http://www.apache.org

• Mozilla Web browser
– http://www.mozilla.org/developer/

• Sendmail
– http://www.sendmail.org/

• BIND Domain Name System
– Client resolver and DNS server
– http://www.isc.org/index.pl?/sw/bind/

• …

12

34

The Web as an Example Application

35

The Web: URL, HTML, and HTTP

• Uniform Resource Locator (URL)
– A pointer to a “black box” that accepts request methods
– Formatted string with protocol (e.g., http), server name

(e.g., www.cnn.com), and resource name (coolpic.jpg)

• HyperText Markup Language (HTML)
– Representation of hyptertext documents in ASCII format
– Format text, reference images, embed hyperlinks
– Interpreted by Web browsers when rendering a page

• HyperText Transfer Protocol (HTTP)
– Client-server protocol for transferring resources
– Client sends request and server sends response

36

Example: HyperText Transfer Protocol

GET /courses/spring09/cs375/ HTTP/1.1
Host: personal.denison.edu
User-Agent: Mozilla/4.03
<CRLF>

HTTP/1.1 200 OK
Date: Mon, 4 Feb 2008 13:09:03 GMT
Server: Netscape-Enterprise/3.5.1
Content-Type: text/plain
Last-Modified: Mon, 4 Feb 2008 11:12:23 GMT
Content-Length: 23
<CRLF>
Site under construction

Request

Response

13

37

Components: Clients, Proxies, Servers

• Clients
– Send requests and receive responses
– Browsers, spiders, and agents

• Servers
– Receive requests and send responses
– Store or generate the responses

• Proxies (see “HTTP Proxy” assignment!)
– Act as a server for the client, and a client to the server
– Perform extra functions such as anonymization, logging,

transcoding, blocking of access, caching, etc.

38

Example Client: Web Browser

• Generating HTTP requests
– User types URL, clicks a hyperlink, or selects bookmark
– User clicks “reload”, or “submit” on a Web page
– Automatic downloading of embedded images

• Layout of response
– Parsing HTML and rendering the Web page
– Invoking helper applications (e.g., Acrobat, PowerPoint)

• Maintaining a cache
– Storing recently-viewed objects
– Checking that cached objects are fresh

39

Client: Typical Web Transaction

• User clicks on a hyperlink
– http://www.cnn.com/index.html

• Browser learns the IP address
– Invokes gethostbyname(www.cnn.com)
– And gets a return value of 64.236.16.20

• Browser creates socket and connects to server
– OS selects an ephemeral port for client side
– Contacts 64.236.16.20 on port 80

• Browser writes the HTTP request into the socket
– “GET /index.html HTTP/1.1

 Host: www.cnn.com
 <CRLF>”

14

40

In Fact, Try This at a UNIX Prompt…

219a$ telnet www.cnn.com 80
GET /index.html HTTP/1.1
Host: www.cnn.com
<CRLF>

And you’ll see the response…

41

Client: Typical Web Transaction (Cont)

• Browser parses the HTTP response message
– Extract the URL for each embedded image
– Create new sockets and send new requests
– Render the Web page, including the images

• Opportunities for caching in the browser
– HTML file
– Each embedded image
– IP address of the Web site

42

Web Server

• Web site vs. Web server
– Web site: collections of Web pages associated

with a particular host name
– Web server: program that satisfies client

requests for Web resources

• Handling a client request
– Accept the socket
– Read and parse the HTTP request message
– Translate the URL to a filename
– Determine whether the request is authorized
– Generate and transmit the response

15

43

Conclusions

• Client-server paradigm
– Model of communication between end hosts
– Client asks, and server answers

• Sockets
– Simple byte-stream and messages abstractions
– Common application programmable interface

• HyperText Transfer Protocol (HTTP)
– Client-server protocol
– URL, HTML, and HTTP

• Next class session: IP packet switching!

