Link-State Routing

Reading: Sections 4.2 and 4.3.4

CS 375: Computer Networks
Thomas C. Bressoud

4 N
Goals of Today’s Lecture

* Inside a router
—Control plane: routing protocols
—Data plane: packet forwarding

* Path selection
—Minimum-hop and shortest-path routing
—Dijkstra’s algorithm

* Topology change
—Using beacons to detect topology changes
—Propagating topology information

* Routing protocol: Open Shortest Path First)

4)
What is Routing?

* A famous quotation from RFC 791
“A name indicates what we seek.
An address indicates where it is.
A route indicates how we get there.”
-- Jon Postel

>

4)
Routing vs. Forwarding

* Routing: control plane
—Computing paths the packets will follow
—Routers talking amongst themselves
—Individual router creating a forwarding table

* Forwarding: data plane
—Directing a data packet to an outgoing link
—Individual router using a forwarding table

&8 88

Y

4 N\
Data and Control Planes

control plane

data plane Processor

=

Switching
Fabric

4)
Router Physical Layout

Juniper T series

—— Switch

Linecards

Cisco 12000

S

e N
Line Cards (Interface Cards, Adaptors)

* Interfacing !
—Physical link to/from link
— Switching fabric
 Packet handling ¢
— Packet forwarding v 51
—Decrement time-to-live 'g lookup 2
— Buffer management 2 8.
—Link scheduling v -
—Packet filtering
—Rate limiting
—Packet marking to/from switch
—Measurement
} J,
4)
Switching Fabric
* Deliver packet inside the router
—From incoming interface to outgoing interface
— A small network in and of itself
* Must operate very quickly
—Multiple packets going to same outgoing interface
— Switch scheduling to match inputs to outputs
* Implementation techniques
—Bus, crossbar, interconnection network, ...
—Running at a faster speed (e.g., 2X) than links
—Dividing variable-length packets into fixed-size cells
8)
4)

Packet Switching

I 4] Link L. ingress I choose Link 1, egress
Egress

Link 2, ingress| | Choose Link 2, egress
Egress

Link 3, ingress| | Choose Link 3, egress
Egress

Link 4, ingress| | Choose Link 4, egress
Egress

4 N\
Router Processor

» So-called “Loopback” interface
—IP address of the CPU on the router

* Interface to network administrators
—Command-line interface for configuration
—Transmission of measurement statistics

» Handling of special data packets
—Packets with IP options enabled
—Packets with expired Time-To-Live field

* Control-plane software
—Implementation of the routing protocols
—Creation of forwarding table for the line cards 0)

4 I
Where do Forwarding Tables Come From?

* Routers have forwarding tables
—Map IP prefix to outgoing link(s)

* Entries can be statically configured
—E.g., “map 12.34.158.0/24 to Serial0/0.1”

* But, this doesn’t adapt
—To failures
—To new equipment
—To the need to balance load

* That is where routing protocols come in

4)
Computing Paths Between Routers

* Routers need to know two things
—Which router to use to reach a destination prefix
—Which outgoing interface to use to reach that router

u z

S &S & &> 12.34.158.0/24

) _/

Interface along Router z that can
the path to z reach destination

» Today’s class: just how routers reach each other
—How u knows how to forward packets toward z

=)

Computing the Shortest Paths

(assuming you already know the topology)

4 N
Shortest-Path Routing

* Path-selection model
—Destination-based
—Load-insensitive (e.g., static link weights)
—Minimum hop count or sum of link weights

4 N\
Shortest-Path Problem

* Given: network topology with link costs
—c(x,y): link cost from node x to node y
—Infinity if x and y are not direct neighbors

» Compute: least-cost paths to all nodes
—From a given source u to all other nodes
—p(v): predecessor node along path from source to v

v 15)

4)
Dijkstra’s Shortest-Path Algorithm

* |terative algorithm
— After k iterations, know least-cost path to k nodes

* S: nodes whose least-cost path definitively known
—Initially, S = {u} where u is the source node
—Add one node to S in each iteration

* D(v): current cost of path from source to node v
—Initially, D(v) = c(u,v) for all nodes v adjacent to u
—... and D(v) = = for all other nodes v
— Continually update D(v) as shorter paths are learned

)
4 N
Dijsktra’s Algorithm
1 Initialization:
2 S={u}
3 forall nodes v
4 if (vis adjacent to u)
5 D(v) = c(u,v)
6 else D(v) =
7
8 Loop
9 find w not in S with the smallest D(w)
10 addwtoS
11 update D(v) for all v adjacent to w and not in S:
12 D(v) = min{D(v), D(w) + c(w,v)}
13 until all nodes in S
")
4 N

Dijkstra’s Algorithm Example

4)
Dijkstra’s Algorithm Example

2 2
3 1 o.! 3 1 !
\,4’—. \,‘L’o
2 2
5 5
4./3. 4./3.
2 2
3 1 1 3 i 1
4 4
2 — 2 —
1 1
5 5
40/3. 4 /3(:)
4

e N
Shortest-Path Tree
 Shortest-path tree from u « Forwarding table at u
; o & 1 link
" \x 4 e v (uyv)
3 7S Wl (uw)
" /30 t x | (uw)
s y | (uy)
z (uyv)
s (uw)
t | (uw)
*)
4)

Learning the Topology

(by the routers talk amongst themselves)

21

e

Link-State Routing

» Each router keeps track of its incident links
—Whether the link is up or down
—The cost on the link

» Each router broadcasts the link state
—To give every router a complete view of the graph

« Each router runs Dijkstra’s algorithm
—To compute the shortest paths
—... and construct the forwarding table

* Example protocols
—Open Shortest Path First (OSPF)
—Intermediate System — Intermediate System (IS-IS)

-

Detecting Topology Changes

* Beaconing
—Periodic “hello” messages in both directions
—Detect a failure after a few missed “hellos”

“hello”

S

* Performance trade-offs

—Detection speed
—Overhead on link bandwidth and CPU
—Likelihood of false detection

2)

-

Broadcasting the Link State

* Flooding
—Node sends link-state information out its links
—And then the next node sends out all of its links
—... except the one where the information arrived

L]
o—GE—0 D—>E—0
(a) (b)
—@ X A

L4 |
D—@—©o D—0O—0C¢
(c) (d)

2

=
Broadcasting the Link State

* Reliable flooding
—Ensure all nodes receive link-state information
—... and that they use the latest version

* Challenges
—Packet loss
—Qut-of-order arrival

* Solutions
—Acknowledgments and retransmissions
—Sequence numbers
—Time-to-live for each packet

)

=
When to Initiate Flooding

* Topology change
—Link or node failure
—Link or node recovery

* Configuration change
—Link cost change

* Periodically
—Refresh the link-state information
—Typically (say) 30 minutes
—Corrects for possible corruption of the data

)

When the Routers Disagree

(during transient periods)

27

4)
Convergence

* Getting consistent routing information to all nodes
—E.g., all nodes having the same link-state database

« Consistent forwarding after convergence
—All nodes have the same link-state database
—All nodes forward packets on shortest paths
—The next router on the path forwards to the next hop

»)

4 I
Transient Disruptions

* Detection delay
—A node does not detect a failed link immediately
—... and forwards data packets into a “blackhole”
—Depends on timeout for detecting lost hellos

4)
Transient Disruptions

* Inconsistent link-state database
—Some routers know about failure before others
—The shortest paths are no longer consistent
—Can cause transient forwarding loops

»)

4)
Convergence Delay

» Sources of convergence delay
—Detection latency
—Flooding of link-state information
—Shortest-path computation
—Creating the forwarding table

 Performance during convergence period
—Lost packets due to blackholes and TTL expiry
—Looping packets consuming resources
—Qut-of-order packets reaching the destination

* Very bad for VolP, online gaming, and video}u

4 N
Reducing Convergence Delay

 Faster detection
—Smaller hello timers
—Link-layer technologies that can detect failures

* Faster flooding
—Flooding immediately
—Sending link-state packets with high-priority

* Faster computation
— Faster processors on the routers
—Incremental Dijkstra’s algorithm

* Faster forwarding-table update
—Data structures supporting incremental updates

4)
Scaling Link-State Routing

» Overhead of link-state routing
—Flooding link-state packets throughout the network
—Running Dijkstra’s shortest-path algorithm

* Introducing hierarchy through “areas”

area //

border
router

>

=
Conclusions

* Routing is a distributed algorithm
—React to changes in the topology
— Compute the paths through the network

« Shortest-path link state routing
—Flood link weights throughout the network
— Compute shortest paths as a sum of link weights
—Forward packets on next hop in the shortest path

® Convergence process
— Changing from one topology to another
—Transient periods of inconsistency across routers

Y

