
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Goals of Today's Lecture

- Distance-vector routing \qquad
-Bellman-Ford algorithm
-Routing Information Protocol (RIP) \qquad
- Path-vector routing
-Faster convergence than distance vector
\qquad
-More flexibility in selecting paths
- Interdomain routing
-Autonomous Systems (AS)
-Border Gateway Protocol (BGP)

Shortest-Path Routing

- Path-selection model \qquad
-Destination-based
-Load-insensitive (e.g., static link weights)
-Minimum hop count or sum of link weights
\qquad
\qquad

Shortest-Path Problem

- Compute: path costs to all nodes \qquad
-From a given source u to all other nodes
-Cost of the path through each outgoing link \qquad -Next hop along the least-cost path to s

\qquad
\qquad
\qquad
\qquad

Bellman-Ford Algorithm

\qquad

- Define distances at each node x
$-d_{x}(y)=$ cost of least-cost path from x to y
- Update distances based on neighbors $-d_{x}(y)=\min \left\{c(x, v)+d_{v}(y)\right\}$ over all neighbors v

Distance Vector Algorithm

- $c(x, v)=$ cost for direct link from x to v
- Node x maintains costs of direct links $c(x, v)$
- $D_{x}(y)=$ estimate of least cost from x to y \qquad
- Node x maintains distance vector $D_{x}=\left[D_{x}(y): y \in N\right]$
- Node x maintains its neighbors' distance vectors \qquad
-For each neighbor v, x maintains $D_{v}=\left[D_{v}(y): y \in N\right]$
- Each node v periodically sends D_{v} to its neighbors
- And neighbors update their own distance vectors
$-D_{x}(y) \leftarrow \min _{v}\left\{c(x, v)+D_{v}(y)\right\} \quad$ for each node $y \in N$ \qquad
- Over time, the distance vector D_{x} converges

Distance Vector Algorithm

Iterative, asynchronous: each local iteration caused by:

- Local link cost change
- Distance vector update message from neighbor
Distributed:
- Each node notifies neighbors only when its DV changes
- Neighbors then notify their neighbors if necessary

Each node:
\qquad

Distance Vector Example: Step 2

Distance Vector Example: Step 3

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Distance Vector: Link Cost Changes

Link cost changes:

- Node detects local link cost change
- Updates the distance table

- If cost change in least cost path, notify neighbors

Distance Vector: Link Cost Changes

Link cost changes:

- Good news travels fast
- Bad news travels slow - "count to

infinity" problem! \qquad

time $\xrightarrow[t_{0}]{\text { change }} \quad \mathrm{t}_{1} \quad \mathrm{t}_{2} \quad \mathrm{t}_{3} \quad \mathrm{t}_{4}$

Distance Vector: Poison Reverse

If Z routes through Y to get to X :

- Z tells Y its (Z 's) distance to X is infinite (so Y won't route to X via Z)
- Still, can have problems when more than 2

\qquad routers are involved

Routing Information Protocol (RIP)

\qquad

- Distance vector protocol
-Nodes send distance vectors every 30 seconds
- ... or, when an update causes a change in routing
- Link costs in RIP
-All links have cost 1
-Valid distances of 1 through 15
$-\ldots$ with 16 representing infinity
- Small "infinity" \rightarrow smaller "counting to infinity" problem \qquad
- RIP is limited to fairly small networks
-E.g., often used in small campus networks

Comparison of LS and DV Routing

Message complexity

- LS: with n nodes, E links, $O(n E)$ messages sent
- DV: exchange between neighbors only

Speed of Convergence

- LS: relatively fast
- DV: convergence time varies
- May be routing loops
- Count-to-infinity problem

Robustness: what happens
if router malfunctions?
LS:

- Node can advertise incorrect link cost
- Each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- Each node's table used by others (error propagates)
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Similarities of LS and DV Routing

- Shortest-path routing
- Metric-based, using link weights
- Routers share a common view of how good a path is
- As such, commonly used inside an organization -RIP and OSPF are mostly used as intradomain protocols
-E.g., smaller and older networks use RIP, and AT\&T (i.e. large network) uses OSPF
- But the Internet is a "network of networks"
-How to stitch the many networks together?
-When networks may not have common goals
\qquad
- ... and may not want to share information

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Interdomain Routing

- Internet is divided into Autonomous Systems \qquad
- Distinct regions of administrative control
- Routers/links managed by a single "institution" \qquad
- Service provider, company, university, ...
- Hierarchy of Autonomous Systems \qquad
-Large, tier-1 provider with a nationwide backbone
- Medium-sized regional provider with smaller backbone
-Small network run by a single company or university
- Interaction between Autonomous Systems \qquad
- Internal topology is not shared between ASes
- ... but, neighboring ASes interact to coordinate routing

Autonomous System Numbers

AS Numbers are 16 bit values.

Currently over 20,000 in use.

```
Level 3: }
MIT: }
Harvard: }1
Yale: }2
Denison (through OARnet): }60
AT&T: 7018, 6341, 5074, ...
UUNET: 701, 702, 284, 12199, ...
Sprint: 1239, 1240, 6211, 6242, ...
• ...
```


whois -h whois.arin.net as600

```
OrgName: OARnet
OrgID: OAR
Address: 1224 Kinnear Road
Address: Columbus
City: Columbus
StateProv: OH
PostaICode: 43212-1198
Country: US
ASNumber: 600
ASName: OARNET-AS
ASName: OARN
ASHandle:
RegDate: 1990-03-1
Updated: 1996-05-14
```

RTechHandle: GS1050-ARIN
RTechName: Steele, Greg
RTechPhone: +1-800-627-6420
RTechEmail: hostmaster@oar.net

AS Number Trivia

- AS number is a 16 -bit quantity
- So, 65,536 unique AS numbers
- Some are reserved (e.g., for private AS numbers)
- So, only 64,510 are available for public use
- Managed by Internet Assigned Numbers Authority
- Gives blocks of 1024 to Regional Internet Registries
- IANA has allocated 39,934 AS numbers to RIRs (Jan'06)
- RIRs assign AS numbers to institutions
-RIRs have assigned 34,827 (Jan’06)
- Only 21,191 are visible in interdomain routing (Jan'06)
- Recently started assigning 32-bit AS \#s (2007)

Challenges for Interdomain Routing

- Scale
-Prefixes: 200,000, and growing
-ASes: 20,000+ visible ones, and 40K allocated -Routers: at least in the millions...
- Privacy
-ASes don't want to divulge internal topologies
$-\ldots$ or their business relationships with neighbors
\qquad
\qquad
\qquad
\qquad
\qquad
- Policy
-No Internet-wide notion of a link cost metric \qquad
-Need control over where you send traffic
$-\ldots$ and who can send traffic through you

Path-Vector Routing

\qquad
\qquad
\qquad
\qquad
\qquad

Link-State Routing is Problematic

- Topology information is flooded \qquad
-High processing overhead in a large network
- Minimizes some notion of total distance \qquad
-Works only if policy is shared and uniform
- Typically used only inside an AS
-E.g., OSPF and IS-IS

Distance Vector is on the Right Track

- Advantages
-Hides details of the network topology
-Nodes determine only "next hop" toward the dest
- Disadvantages
-Minimizes some notion of total distance, which is difficult in an interdomain setting
-Slow convergence due to the counting-to-infinity problem ("bad news travels slowly")
- Idea: extend the notion of a distance vector
-To make it easier to detect loops

Path-Vector Routing

- Extension of distance-vector routing \qquad
-Support flexible routing policies
-Avoid count-to-infinity problem
- Key idea: advertise the entire path
-Distance vector: send distance metric per dest d
-Path vector: send the entire path for each dest d

\qquad
\qquad
\qquad
\qquad
\qquad

Faster Loop Detection

- Node can easily detect a loop \qquad
-Look for its own node identifier in the path
-E.g., node 1 sees itself in the path " $3,2,1$ " \qquad
- Node can simply discard paths with loops -E.g., node 1 simply discards the advertisement
\qquad
\qquad
\qquad
"d: path (3,2,1)"

Flexible Policies

\qquad

- Each node can apply local policies \qquad
-Path selection: Which path to use?
-Path export: Which paths to advertise? \qquad
- Examples
-Node 2 may prefer the path " $2,3,1$ " over " 2,1 "
-Node 1 may not let node 3 hear the path " 1,2 "

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Border Gateway Protocol

- Interdomain routing protocol for the Internet \qquad
-Prefix-based path-vector protocol
-Policy-based routing based on AS Paths
\qquad
-Evolved during the past 18 years \qquad
- 1989 : BGP-1 [RFC 1105], replacement for EGP
- 1990 : BGP-2 [RFC 1163]
- 1991 : BGP-3 [RFC 1267]
- 1995 : BGP-4 [RFC 1771], support for CIDR
- 2006 : BGP-4 [RFC 4271], update

BGP Operations

Incremental Protocol

- A node learns multiple paths to destination \qquad
-Stores all of the routes in a routing table
-Applies policy to select a single active route
$-\ldots$ and may advertise the route to its neighbors
- Incremental updates
-Announcement
- Upon selecting a new active route, add node id to path
\qquad
\qquad
\qquad
- ... and (optionally) advertise to each neighbor
-Withdrawal
- If the active route is no longer available
- ... send a withdrawal message to the neighbors

BGP Path Selection

- Simplest case
-Shortest AS path
-Arbitrary tie break
- Example

- But, BGP is not limited to shortest-path routing -Policy-based routing
-Three-hop AS path preferred over a five-hop AS path
-AS 12654 prefers path through Global Crossing

