

Distance-Vector and Path-Vector Routing Reading: Sections 4.2 and 4.3.4

CS 375: Computer Networks Thomas C. Bressoud

Goals of Today's Lecture

- Distance-vector routing
 - -Bellman-Ford algorithm
 - -Routing Information Protocol (RIP)
- Path-vector routing
 - -Faster convergence than distance vector
 - -More flexibility in selecting paths
- Interdomain routing
 - -Autonomous Systems (AS)
 - -Border Gateway Protocol (BGP)

Shortest-Path Routing

- Path-selection model
 - -Destination-based
 - –Load-insensitive (e.g., static link weights)
 - -Minimum hop count or sum of link weights

Shortest-Path Problem

- Compute: path costs to all nodes
 - -From a given source u to all other nodes
 - -Cost of the path through each outgoing link
 - -Next hop along the least-cost path to s

Bellman-Ford Algorithm

- Define distances at each node x
 d_x(y) = cost of least-cost path from x to y
- Update distances based on neighbors
 d_x(y) = min {c(x,v) + d_y(y)} over all neighbors v

Distance Vector Algorithm

- c(x,v) = cost for direct link from x to v
 Node x maintains costs of direct links c(x,v)
- D_x(y) = estimate of least cost from x to y
 Node x maintains distance vector D_x = [D_x(y): y ∈ N]
- Node x maintains its neighbors' distance vectors
 – For each neighbor v, x maintains D_v = [D_v(y): y ∈ N]
- Each node v periodically sends D_v to its neighbors

 And neighbors update their own distance vectors
 D_x(y) ← min_v{c(x,v) + D_v(y)} for each node y ∈ N
- \bullet Over time, the distance vector $\boldsymbol{D}_{\boldsymbol{x}}$ converges

Distance Vector Algorithm

Iterative, asynchronous: each local iteration caused by:

Local link cost change

 Distance vector update message from neighbor

Distributed:

- Each node notifies neighbors only when its DV changes
- Neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or message from neighbor)

recompute estimates

if distance to any destination has changed, *notify* neighbors

Distance Vector Example: Step 2 Optimum 2-hop paths Table for A В 0 В В D 3 D 1 0 D 0 D D D D 2

Routing Information Protocol (RIP)

- Distance vector protocol
 - Nodes send distance vectors every 30 seconds
 - -... or, when an update causes a change in routing
- Link costs in RIP
 - All links have cost 1
 - -Valid distances of 1 through 15
 - -... with 16 representing infinity
 - -Small "infinity" \rightarrow smaller "counting to infinity" problem
- · RIP is limited to fairly small networks
 - -E.g., often used in small campus networks

14

Comparison of LS and DV Routing

Message complexity

- <u>LS:</u> with n nodes, E links, O(nE) messages sent
- <u>DV:</u> exchange between neighbors only

Speed of Convergence

- LS: relatively fast
- <u>DV</u>: convergence time varies
 - May be routing loops
 - Count-to-infinity problem

Robustness: what happens if router malfunctions?

<u>_S:</u>

- Node can advertise incorrect link cost
- Each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- Each node's table used by others (error propagates)

15

Similarities of LS and DV Routing

- · Shortest-path routing
 - Metric-based, using link weights
 - -Routers share a common view of how good a path is

• As such, commonly used inside an organization

- -RIP and OSPF are mostly used as *intra*domain protocols
- -E.g., smaller and older networks use RIP, and AT&T (i.e. large network) uses OSPF
- But the Internet is a "network of networks"
 - How to stitch the many networks together?
 - -When networks may not have common goals
 - ... and may not want to share information

16

Interdomain Routing and Autonomous Systems (ASes)

17

Interdomain Routing

- Internet is divided into Autonomous Systems
 - Distinct regions of administrative control
 - Routers/links managed by a single "institution"
 - Service provider, company, university, ...
- Hierarchy of Autonomous Systems
 - -Large, tier-1 provider with a nationwide backbone
 - Medium-sized regional provider with smaller backbone
 - Small network run by a single company or university
- Interaction between Autonomous Systems
 - Internal topology is not shared between ASes
 - -... but, neighboring ASes interact to coordinate routing 18

			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_

Autonomous System Numbers

AS Numbers are 16 bit values.

Currently over 20,000 in use.

- Level 3: 1
- MIT: 3
- Harvard: 11
- Yale: 29
- Denison (through OARnet): 600
- AT&T: 7018, 6341, 5074, ...
- UUNET: 701, 702, 284, 12199, ...
- Sprint: 1239, 1240, 6211, 6242, ...

whois -h whois.arin.net as600

OrgName: OARnet
OrgID: OAR
Address: 1224 Kinnear Road
Address: Columbus
City: Columbus
StateProv: OH
PostalCode: 43212-1198

Country: US

ASNumber: 600 ASName: OARNET-AS ASHandle: AS600 Comment: RegDate: 1990-03-11

Updated: 1996-05-14 RTechHandle: GS1050-ARIN RTechName: Steele, Greg RTechPhone: +1-800-627-6420 RTechEmail: hostmaster@oar.net

AS Number Trivia

- AS number is a 16-bit quantity
 - -So, 65,536 unique AS numbers
- Some are reserved (e.g., for private AS numbers)
 - -So, only 64,510 are available for public use
- Managed by Internet Assigned Numbers Authority
 - Gives blocks of 1024 to Regional Internet Registries
 - IANA has allocated 39,934 AS numbers to RIRs (Jan'06)
- RIRs assign AS numbers to institutions
 - -RIRs have assigned 34,827 (Jan'06)
 - -Only 21,191 are visible in interdomain routing (Jan'06)
- Recently started assigning 32-bit AS #s (2007)

• AS-level topology -Destinations are IP prefixes (e.g., 12.0.0.0/8) -Nodes are Autonomous Systems (ASes) -Edges are links and business relationships

Challenges for Interdomain Routing

- Scale
 - -Prefixes: 200,000, and growing
 - -ASes: 20,000+ visible ones, and 40K allocated
 - -Routers: at least in the millions...

Privacy

- -ASes don't want to divulge internal topologies
- -... or their business relationships with neighbors

Policy

- -No Internet-wide notion of a link cost metric
- -Need control over where you send traffic
- -... and who can send traffic through you

3

Path-Vector Routing

Shortest-Path Routing is Restrictive All traffic must travel on shortest paths All nodes need common notion of link costs Incompatible with commercial relationships **National** National > **YES** ISP1 ISP₂ NO Regional Regional³ Regional³ ISP1 ISP3 ISP2 Cust1 Cust3 Cust2

Link-State Routing is Problematic

- Topology information is flooded
 - -High bandwidth and storage overhead
 - -Forces nodes to divulge sensitive information
- Entire path computed locally per node
 - -High processing overhead in a large network
- Minimizes some notion of total distance
 - -Works only if policy is shared and uniform
- Typically used only inside an AS
 - -E.g., OSPF and IS-IS

_

Distance Vector is on the Right Track

- Advantages
 - -Hides details of the network topology
 - -Nodes determine only "next hop" toward the dest
- Disadvantages
 - –Minimizes some notion of total distance, which is difficult in an interdomain setting
 - -Slow convergence due to the counting-to-infinity problem ("bad news travels slowly")
- Idea: extend the notion of a distance vector
 - -To make it easier to detect loops

27

Path-Vector Routing • Extension of distance-

- Extension of distance-vector routing
 - -Support flexible routing policies
 - -Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - -Distance vector: send distance metric per dest d
 - -Path vector: send the entire path for each dest d

Faster Loop Detection

- Node can easily detect a loop
 - -Look for its own node identifier in the path
 - -E.g., node 1 sees itself in the path "3, 2, 1"
- Node can simply discard paths with loops
 - −E.g., node 1 simply discards the advertisement

Flexible Policies

- Each node can apply local policies
 - -Path selection: Which path to use?
 - -Path export: Which paths to advertise?
- Examples
 - -Node 2 may prefer the path "2, 3, 1" over "2, 1"
 - -Node 1 may not let node 3 hear the path "1, 2"

-	

Border Gateway Protocol (BGP)

31

Border Gateway Protocol

- Interdomain routing protocol for the Internet
 - -Prefix-based path-vector protocol
 - -Policy-based routing based on AS Paths
 - -Evolved during the past 18 years
 - 1989 : BGP-1 [RFC 1105], replacement for EGP
 - 1990 : BGP-2 [RFC 1163]
 - 1991 : BGP-3 [RFC 1267]
 - 1995 : BGP-4 [RFC 1771], support for CIDR
 - 2006 : BGP-4 [RFC 4271], update

2

Establish session on TCP port 179 Exchange all active routes While connection is ALIVE exchange route UPDATE messages

Incremental Protocol

- A node learns multiple paths to destination
 - -Stores all of the routes in a routing table
 - -Applies policy to select a single active route
 - -... and may advertise the route to its neighbors
- Incremental updates
 - -Announcement
 - Upon selecting a new active route, add node id to path
 - ... and (optionally) advertise to each neighbor
 - -Withdrawal
 - If the active route is no longer available
 - ... send a withdrawal message to the neighbors

34

