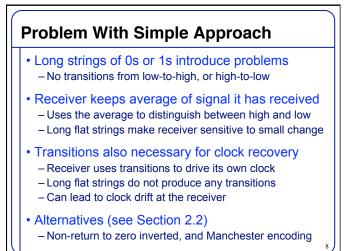
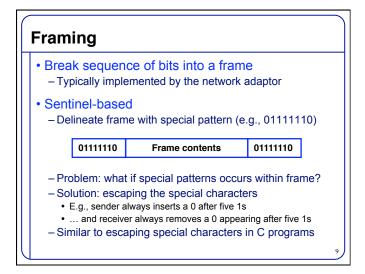

- IP packet transferred over multiple hops
 - Each hop has a link layer protocol
 - May be different on different hops
- Analogy: trip from Denison to Lausanne
 - Shuttle: Denison to CMH
 - Plane: CMH to LaGuardia; LaGuardia to Geneva
 - Train: Geneva to Lausanne


Refining the analogy


- Tourist == packet
- Transport segment == communication link
- Transportation mode == link-layer protocol
- Travel agent == routing algorithm

	Link-Layer Services	
	• Encoding – Representing the 0s and 1s	
	 Framing Encapsulating packet into frame, adding header, trailer Using MAC addresses, rather than IP addresses 	
	 Error detection Errors caused by signal attenuation, noise. Receiver detecting presence of errors 	
	 Error correction Receiver correcting errors without retransmission 	
l	 Flow control Pacing between adjacent sending and receiving nodes 6 	

Framing (Continued)

Counter-based

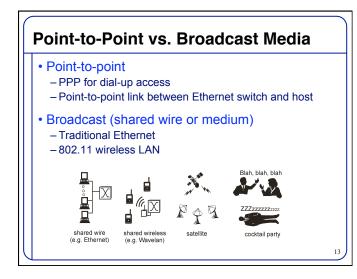
- Include the payload length in the header
- -... instead of putting a sentinel at the end
- Problem: what if the count field gets corrupted?
 - Causes receiver to think the frame ends at a different place
- Solution: catch later when doing error detection

10

• And wait for the next sentinel for the start of a new frame

Clock-based

- Make each frame a fixed size
- No ambiguity about start and end of frame
- But, may be wasteful

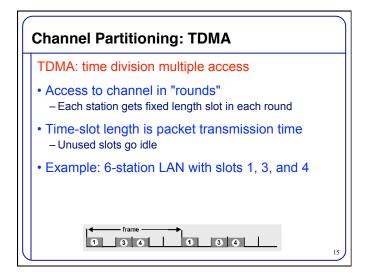

Error Detection

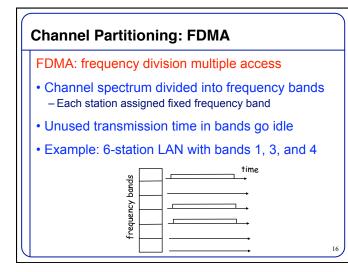
- Errors are unavoidable
 - Electrical interference, thermal noise, etc.
- Error detection
 - Transmit extra (redundant) information
 - Use redundant information to detect errors
 - Extreme case: send two copies of the data
 - Trade-off: accuracy vs. overhead
- Techniques for detecting errors
 - Parity checking
 - Checksum
 - Cyclic Redundancy Check (CRC)

Error Detection Techniques

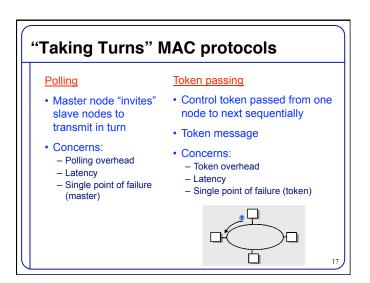
• Parity check

- Add an extra bit to a 7-bit code
- Odd parity: ensure an odd number of 1s
 E.g., 0101011 becomes 01010111
- Even parity: ensure an even number of 1s
 E.g., 0101011 becomes 01010110
- Checksum
 - Treat data as a sequence of 16-bit words
 - Compute a sum of all the 16-bit words, with no carries
 - Transmit the sum along with the packet
- Cyclic Redundancy Check (CRC) – See Section 2.4.3

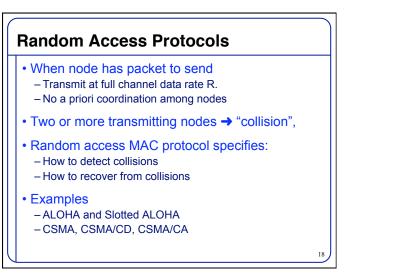




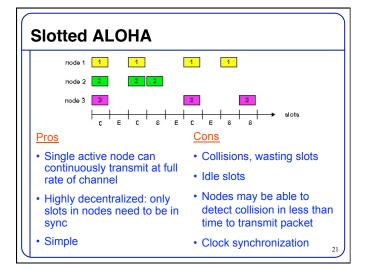
Multiple Access Protocol


- Single shared broadcast channel
- Avoid having multiple nodes speaking at once
- Otherwise, collisions lead to garbled data
- Multiple access protocol
 - Distributed algorithm for sharing the channel
 - Algorithm determines which node can transmit
- Classes of techniques
 - Channel partitioning: divide channel into pieces
 - Taking turns: passing a token for the right to transmit
 - Random access: allow collisions, and then recover

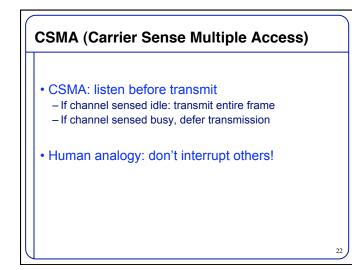
14

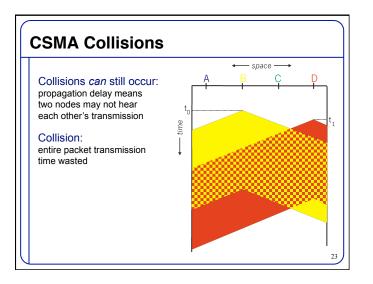


Key Ideas of Random Access

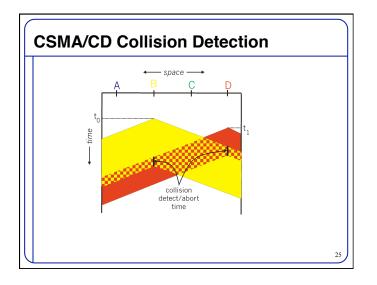

- Carrier Sense (CS)
 - Listen before speaking, and don't interrupt
 - Checking if someone else is already sending data
 - -... and waiting till the other node is done
- Collision Detection (CD)
 - If someone else starts talking at the same time, stop
 - Realizing when two nodes are transmitting at once
 - \ldots by detecting that the data on the wire is garbled

10


Randomness

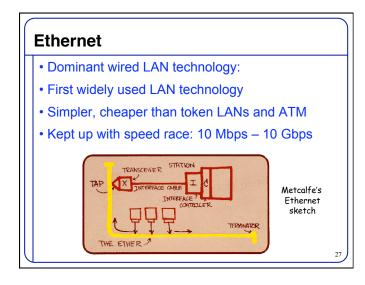

- Don't start talking again right away
- Waiting for a random time before trying again

Slotted ALOHA **Assumptions** Operation • All frames same size · When node obtains fresh frame, transmits in next slot Time divided into equal slots (time to transmit a • No collision: node can send new frame in next slot frame) Nodes start to transmit Collision: node retransmits frames only at start of slots frame in each subsequent slot with probability p until Nodes are synchronized success · If two or more nodes transmit, all nodes detect collision

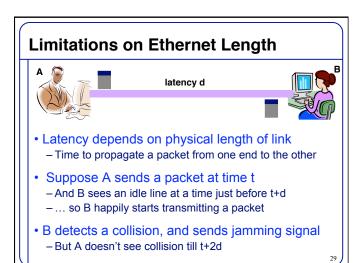


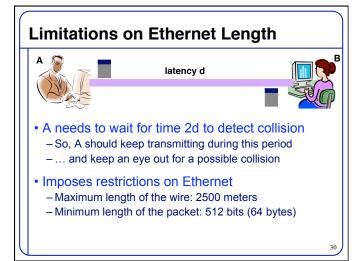
- CSMA/CD: carrier sensing, deferral as in CSMA
 - Collisions detected within short time
 Colliding transmissions aborted, reducing wastage
- Collision detection
 - Easy in wired LANs: measure signal strengths, compare transmitted, received signals

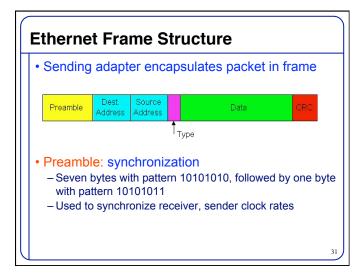
24

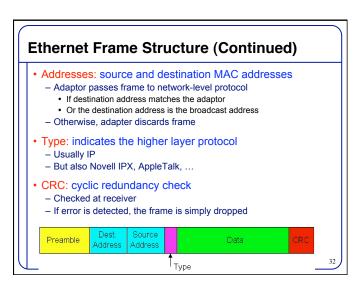

- Difficult in wireless LANs: receiver shut off while transmitting
- Human analogy: the polite conversationalist

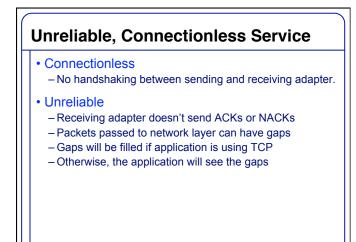
Three Ways to Share the Media

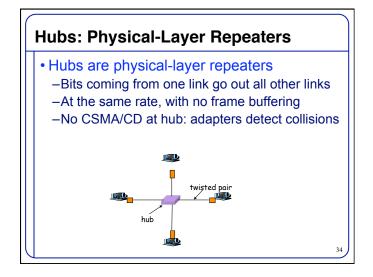

- Channel partitioning MAC protocols:
- Share channel efficiently and fairly at high load
- Inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!
- "Taking turns" protocols
 - Eliminates empty slots without causing collisions
 - Vulnerable to failures (e.g., failed node or lost token)
- Random access MAC protocols
 - Efficient at low load: single node can fully utilize channel
 - High load: collision overhead

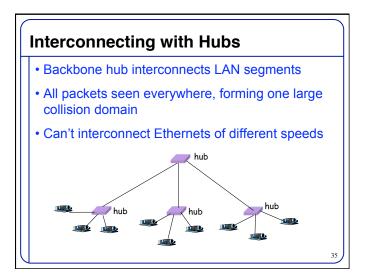


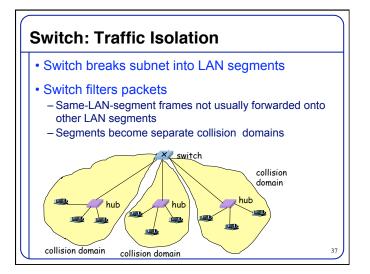





- Carrier Sense: wait for link to be idle
 - Channel idle: start transmitting
 - Channel busy: wait until idle
- Collision Detection: listen while transmitting
 No collision: transmission is complete
 - Collision: abort transmission, and send jam signal
- Random access: exponential back-off
 - After collision, wait a random time before trying again
 After mth collision, choose K randomly from {0, ..., 2^m-1}
 - $-\dots$ and wait for K*512 bit times before trying again







Switch

Link layer device

- -Stores and forwards Ethernet frames
- -Examines frame header and selectively forwards frame based on MAC dest address
- -When frame is to be forwarded on segment, uses CSMA/CD to access segment
- Transparent –Hosts are unaware of presence of switches
- Plug-and-play, self-learning -Switches do not need to be configured

Benefits of Ethernet Easy to administer and maintain Inexpensive Increasingly higher speed Moved from shared media to switches Change everything except the frame format A good general lesson for evolving the Internet

Conclusions

- IP runs on a variety of link layer technologies – Point-to-point links vs. shared media
 - Wide varieties within each class
- · Link layer performs key services
 - Encoding, framing, and error detection
 - Optionally error correction and flow control
- Shared media introduce interesting challenges
 - Decentralized control over resource sharing
 - Partitioned channel, taking turns, and random access
 - Ethernet as a wildly popular example